


Chapter 10

Proximities, Networks, and Schemata.

Roger W. Schvaneve/dt

Over the past several years, my colleagues and I have been developing and evaluating
empirical methods for eliciting and representing human knowledge. The network scaling
technique known as Pathfinder (Dearholt, Schvaneveldt, & Durso, 1985; McDonald &
Schvaneveldt, 1988; Schvaneveldt, Dearholt, & Durso, 1988; Schvaneveldt & Durso,

"'I 1981; Schvaneveldt, Durso, & Dearholt, 1985, 1987, 1989; Schvaneveldt, Durso,
Goldsmith, Breen, Cooke, Tucker, & DeMaio, 1985)has resulted from these efforts. The
essential idea behind Pathfinder is that proximities between entities should be represented
as links in a Pathfinder network if the resulting links form the minimum weight paths in the
complete (or nearly complete) network with proximity estimates as link weights.

Cognitive Structures and Network Structures

Recently, some of our efforts have been directed at identifying substructures, such as
categories, schemata, and procedures in collections of concepts. Various standard tools,
such as cluster analysis and sequence analysis, may be of value in this effort. In conjunc-
tion with our work on Pathfinder, we are also investigating various formal properties of
graphs and networks, such as cliques, dominating node sets, and blocks, as methods of
identifying substructures in networks (cf. Esposito, Chapter 6, this volume).

Another promising line of investigation stems from the extensive work in artificial in-
telligence and cognitive psychology on spreading activation in networks (Anderson, 1983;
Collins & Loftus, 1975;Collins & Quillian, 1969; Meyer & Schvaneveldt, 1976; Quillian,
1967; Schvaneveldt & Meyer, 1973). Spreading activation reveals substructures in the ac-
tivity levels of nodes in the network as a result of the spread of activation from selected
nodes.

Networks and Schemata

Recent work presented under the banners of connectionism or parallel distributed pro-
cessing (PDP) is based on the use of activation in networks to accomplish cognitive
computation. The studies reported in the present chapter were originally inspired by the
chapter on schemata in Volume 2 (Chapter 14) of the PDP books (Rumelhart, Smolensky,
McClelland, & Hinton, 1986).

·Various versions of this chapter were presented at the Rocky Mountain Psychological Association meet-

ings in Albuquerque, New Mexico in April, 1987, at a colloquium at the University of Oklahoma in Oc-

tober, 1987, at the 28th annual meetings of the Psychonomic Society in Seattle, Washington in Novem-
ber, 1987, and at the workshop on High-Level Connectionism in Las Cruces, New Mexico in April, 1988.

Russell Branaghan and Steven Graves assisted in collecting data. Jim McDonald, Derek Partridge, and
Jordan Pollack provided valuable criticism.
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Rumelhart et al. presented an example of network representations of schemata using
knowledge about different types of rooms. They selected 40 descriptors of rooms includ-
ing such things as ceiling, walls, as well as things found in rooms, such as oven, sofa,
television (31 of the descriptors are listed in Table 1). They constructed a network in
which the 40 descriptors were represented as nodes and the weights on the links between
nodes reflected the degree to which the two descriptors connected by a link tend to occur
together. The actual values for the link weights were determined by asking people to
imagine rooms of specific types (i.e., kitchen, living room, office, bedroom, and bath-
room). For each room imagined, the subjects were asked to indicate whether each of the
40 descriptors applied to that room. By analyzing the co-occurrence of the descriptors in
the imagined rooms, weights on the links were computed such that descriptors that tend to
occur together are connected by positively weighted links, descriptors that tend to !Wtoccur
together have negatively weighted links, and intermediate degrees of co-occurrence lead to
intermediate weights with appropriate signs.

Dynamic instantiations of schemata are realized by a procedure in which particular
nodes are activated continuously or "clamped on" (as if an external input is continuously
signaling the presence of the item designated by the node), and the activation is spread
throughout the network until a stable pattern of activation across all of the nodes is attained.
The counterbalancing effects of excitatory (positive) links and inhibitory (negative) links is
critical in producing stable activation states. In a stable state, some nodes will be active and
some inactive.! The active nodes are taken to be the "completion" of the schema given the
information that the items corresponding to the initially clamped nodes are present. For ex-
ample, if the node corresponding to bed were clamped on, one might expect the nodes cor-
responding to other items found in the bedroom to become activated through the spread of
activation. Table 1 shows the final states reached by the Rumelhart et at. network after
clamping sofa, bed, oven, or bathtub.2 The second line of the table shows which nodes
were clamped on for the activation runs. The descriptor items (nodes) are listed in the far
left column, and the dots in the columns indicate the nodes that are activated when the indi-
cated node is clamped on. Inspection of the table shows that the network seems to lead to
reasonable completions of schemata given central members of particular schemata as the
starting point for activation. For example, clamping bathtub leads to a stable state in which
cupboard, toilet, sink, scale, and bathtub are active. Note also that the individual items
may belong to any number of schemata. For example, of the four cases presented in the
table, fireplace is active in one, carpet is active in two, clock is active in three, and ceiling
(not shown) is active in all four.

While these results are quite interesting and suggest that networks may provide a
medium for representing schemata, there is a sense in which obtaining these results is not
surprising given the method for establishing the network in the first place. People were
told to imagine rooms in generating their judgments, and the method showed that their
judgments revealed rooms. If one were looking for a way to identify schemata in a domain

1With the activation schemes used, nodes tend to be driven to an extreme state, either maximally active or
minimally active. In practice, thresholds near zero and one (e.g., .001 and .999) are used to establish sta-
bility.

2Rumelhart et al. actually clamped on ceiling as well as the listed items. Since ceilings are found in all
rooms, it doesn't contribute to differentiating rooms. Our own explorations suggest that clamping an item
common to all of the schemata in a set doesn't make any difference. Representing still other schemata in
the same set of units, however, may benefit from the presence of elements common to a subset of
schemata. In general, we found that adding the additional 9 nodes that Rumelhart et al. used did not change
the behavior of the derived networks with regard to the effects reported here.
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that was not already familiar, it could prove to be difficult to properly instruct people to
make the required judgments.

Table 1. Rumelhart et al. (1986) results.

Node
telephone

books
sofa

drapes
cupboard

toilet
bed

desk-chair
easy-chair

stove

Clamped
bed oven bathtubsola

sink
scale

typewriter
clock

coffee-cup

coffeepot
dresser
oven

bookshelf
picture

ashtray
refrigerator
television
computer

desk

carpet
floor-lamp
fireplace
toaster
bathtub
hanger .=Active - = Inactive

The critical aspect of the data for constructing a network appears to be information
about co-occurrence of the items in schemata. Perhaps this co-occurrence information
could be obtained by simply asking for direct judgments about co-occurrence. Such in-
structions would not presuppose particular schemata (such as asking people to imagine an
instance of a particular schema, e.g., a kitchen), but the co-occurrence of items in people's
experience may be sufficient to serve as the basis of schemata representations. Thus, one
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of the questions for the present study is: Can direct judgments of co-occurrence provide the
basis for network representations of schemata?

Another issue of present interest derives from our recent work on using sparse net-
works to represent associational knowledge structures. The Pathfinder network generation
algorithm takes proximity data as input and produces a network with a subset of the possi-
ble links. Frequency of co-occurrence can provide the proximity data required by the Path-
finder algorithm. In previous work with Pathfinder, the sparsest networks3 contain about
n links on n nodes in contrast to the n(n-l)/2 links in a completely connected undirected
network. For the 31 items we included in the present investigation, this means that a Path-
finder network would consist of about 31 links in contrast to the 465 links in the com-
pletely connected network. This decrease in density of networks has implications both for
the interpretability of the network structures and for the complexity of algorithms required
to compute with the networks. Sparser networks are easier to interpret, and they lead to
significant savings in the amount of memory they occupy. Provided that they include
essential connections, sparse networks may also lead to more efficient computation. Thus
sparse networks have both theoretical and practical value. So another question for the pre-
sent study is: Will the sparse Pathfinder networks provide a basis for representing
schemata, or are the complete networks of the connectionistvariety essential?

In addition, this study also investigates the variation in network performance with dif-
ferent activation schemes. Since a variety of schemes have been used in various connec-
tionist studies, it seems worthwhile to compare and contrast the results obtained with dif-
ferent schemes. Finally, we compare the results obtained with activation paradigms to
some clustering methods including the familiar hierarchical cluster analysis as well as some
methods for extracting local information from Pathfinder networks.

Method

Data Collection
A subset of the room descriptors used by Rumelhart et a1. was used in the present

study. The 31 descriptors selected are shown in the left-hand column of Table 1.
Two different datasets were collected. One set came from using the same method re-

ported by Rumelhart et a1.to allow a comparison with their results. For this method, each
of 24 people was asked to imagine five specific instances of each of five room types (Le.,
living room, kitchen, bedroom, bathroom, and home office). For each specific room, they
were asked to indicate whether each of the 31 descriptors was present in that room. These
are the rooms data.

A second dataset came from asking each of 24 people to judge the frequency of co-oc-
currence of the items in the 465 pairs of the 31 descriptors on a scale of 1 to 9. The scale
represented a continuum from never occur together to always occur together. These are the
co-occurrencedata.

3The , and q parameters associated with generating Pathfinder networks lead to systematic variations in the
density (number of links) of the network. The sparsest networks are obtained with, = 00 and q = n-l,
where n is the number of nodes in the network.
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Network Generation
Each of the two datasets was used to construct two different networks, a completely

connected (connectionist) network and a sparse (Pathfinder) network. We consider each of
the four cases.

Rooms Data - Connectionist Network. The rooms data were used to create a
connectionist network following the procedures described by Rumelhart et a1. (1986, p.
23). The method for establishing weights on the links between nodes essentially produces
large positive weights for pairs of nodes that frequently occur together, large negative
weights for nodes that never or infrequently occur together, and intermediate weights for
the intermediatecases.

Rooms Data - Pathfinder Network. The Pathfinder network was generated from
the rooms data by running the Pathfinder algorithm on the weights used in the connectionist
network. Since the activation paradigms to be used require both positive and negative
weights, the Pathfinder algorithm was run twice over the data. One run generated the posi-
tively weighted links, and by subtracting the weights from the maximum weight, the sec-
ond run of Pathfinder generated the negatively weighted links. The Pathfinder network had
30 positive links and 31 negative links.

Co-occurrence Data - Connectionist Network. The co-occurrence data do not
directly provide information about the probability of co-occurrence; they give relative in-
formation about co-occurrence. The weights for the connectionist network were obtained
by averaging the ratings for each pair of items across the ratings given by the 24 subjects.
The average ratings across all pairs were then converted to z scores with a mean of zero and
a standard deviation of 1. The sign of the weights were such that positive weights corre-
sponded to above average ratings of co-occurrence frequency and vice versa for the nega-
tive weights.

Co-occurrence Data - Pathfinder Network. Just as for the rooms data, the
Pathfinder networks were generated from two applications of the Pathfinder algorithm to
the average ratings of co-occurrence. Positively weighted links were determined from one
run, and negatively weighted links from another run. The resulting network had 30 posi-
tive links and 30 negative links.

Network Activation
Various activation methods were used to investigate the nature of stable states in the

four networks. With all methods, one node was clamped on throughout the activation pro-
cedure, and activation was passed through the networks until a stable state of node activa-
tion was reached. The active nodes in the stable state were taken as instantiations of the
schema most associated with the clamped node. Different runs involved clamping different
nodes. In this report we will focus on the results obtained from clamping either sofa, bed,
bathtub, or refrigerator, which were taken as closely associated with living room, bed-
room, bathroom, and kitchen, respectively. Thus, if the activation methods succeed in in-
stantiating scherrtata,we would expect the items commonly found in each particular type of
room to be activated when a typical node for that room is activated.

Psychometric Analyses
In addition to the activation analyses, we also examined the results of using various

psychometric methods to analyze the data. Each of the datasets (rooms and co-occurrence)
was represented as a proximity matrix which was analyzed by Kruskal's (1964) nonmetric
multidimensional scaling (MDS) method, by Johnson's (1967) hierarchical cluster analysis
(HCA), as well as by the Pathfinder network scaling method discussed earlier. The
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purpose of these analyses was to determine the extent to which the static results of
psychometric methods reflected underlying schemata. We also compared the psychometric
methods with one another and with the network activation methods.

Results and Discussion

A Pathfinder network for the rooms data is shown in Figure 1, and Figure 2 shows a
Pathfinder network for the co-occurrence data. These two networks only depict the posi-
tively valued links. Figure 3 shows the negative links for the rooms data, and Figure 4
shows the negative links for the co-occurrence data.

The positive networks (Figures 1 and 2) are not particularly surprising. Items that co-
occur most frequently are linked. The result is that items found in the same rooms tend to
occur in sets of interlinked items. Of course, some method for determining where the
clusters stop is required to isolate different rooms from one another because the whole set
of terms is connected. If we consider the link weights, the single-link method of hierarchi-
cal clustering is embedded in the Pathfinder networks.4 By successively adding links in
order of the magnitudes of their weights and identifying the connected components of the
resulting network, the clusters obtained in a hierarchical cluster analysis will correspond to
the connected components of the network.

Figure 1. "Positive" Pathfinder network from Rooms data.

4This relation between Pathfinder networks and the single-link hierarchical clustering solution holds for
networks generated with r = 00and q = n-l.
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Figure 2. "Positive" Pathfinder network from Co-occurrence data.

The "negative" networks in Figures 3 and 4 show connections between items that co-
occur least frequently. These negative links may help to identify items that do not belong to
clusters of the positively linked items. The negative links are also necessary to implement
the usual activation schemes used in connectionist networks. Without negative connec-
tions, positive activation simply spreads throughout the network until everything is maxi-
mallyactive. Negative links serve to dampen the positive activation and produce stable ac-
tivation patterns across the nodes.

Figure 3. "Negative" Pathfinder network from Rooms data.



142 Schvaneveldt 10 Proximities, Networks, and Schemata 143

A major lesson to be learned in this exercise is that activation schemes require a fine
balance of positive and negative weights to yield interesting stable states. Collecting data in
the two ways examined here does not necessarily result in such balance. A very careful
selection of descriptors may help. What is needed are descriptors that are uniquely associ-
ated with particular rooms and negatively associated with other rooms. Such items are
found in the present set for kitchens and bathrooms but not for living rooms, offices, and
bedrooms. Of course a learning scheme could be used to adjust the weights to produce the
desired results, but, again, that was not the goal of the present investigation. Perhaps some
other ways of analyzing the datasets will be revealing.

Figure 4. "Negative" Pathfinder network from Co-occurrence data.

Activation Experiments
Several different activation schemes were tried with the various networks we con-

structed. All of the methods yielded very similar results. A summary of these experiments
is shown in Table 2. This table is similar to Table 1 except that results from four different
networks and two datasets are shown. The second line shows which nodes were clamped
on for the activation runs. The next lines show which dataset was used to construct the
networks, and the next lines show whether the network constructed was a complete con-
nectionist (CN) network or a sparse Pathfinder (PF) network. The CN network derived
from the rooms data was based on the same method as that used by Rumelhan et a1.
(1986).

There are several aspects of these results that bear comment. First note that the acti-
vated items (large dots) tend to occur in pairs. This means that the complete networks and
the Pathfinder networks are producing similar results. The one exception is that the Path-
finder network derived from the rooms data leads to activation of kitchen items when bath-
tub is clamped on. In this case, the positive connections between bathroom and kitchen de-
scriptors, through sink (see Figure 1), are strong enough to overcome the negative connec-
tions between toilet and refrigerator and between bathtub and coffee-related items. Appar-
ently a fine balance of positive and negative connections is required to achieve the desired
selectivity in the activationprocess.

This lack of selectivityis seen in the activationpatterns resulting from clamping bed and
sofa for all of the networks. In general, the networks lead to activation of descriptors from
living room, bedroom, and office whenever any of the descriptors typical of any of these
rooms is clamped on. It is somewhat curious that these results do not replicate those of
Rumelhan et a1.(1986), but their footnote 7 on page 22 states that "Some slight modifica-
tions in the database were made in order to emphasize cenain points in our example." Of
course, some slight modifications in the networks used in the present examples would yield
different results, but the interest here was in whether the activation schemes would reveal
interesting patterns in the data. The answer to that question is negative.

toilet
bed

desk-chair
easy-chair

stove

sink
scale

typewriter
clock

coffee-cup

coffeepot
dresser
oven

bookshelf
picture

ashtray
refrigerator
television
computer

desk

carpet
floor-lamp
fireplace
toaster
bathtub
hanger .=Active -=Inactive
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Multidimensional Scaling

Two-dimensional multidimensional scaling (MDS) solutions for the rooms data and the
co-occurrence data are shown in Figures 5 and 6, respectively. While the fit of these two-
dimensional solutions is marginal (stresses are 0.16 and 0.17 for the two solutions), the
solutions are quite revealing. In particular, the solutions show a clear separation of
bathroom and kitchen as well as a lack of differentiation of bedroom, office, and living
room. This result is very similar to that obtained using activation techniques.

ashtray coffeepot refrigerator toaster

coffee-cup ove~tove

easy-chair
sofa

computer telephone
typewriter clock cupboard

sink

bookshel~esk_chair desk
fireplace carpet

picture
books

floor-lamp drapestelevision
clothes-hanger scale

bed
dresser

toilet
bathtub-

Figure 5. Two-dimensional MDS from Rooms data-Stress =0.16.

oven
toaster

coffeepot

stove
refrigerator

cupboard
sink

ashtray

coffee-cup

clock
scale

telephone
television

easy-chair

fireplace toilet

bathtubpicture

drapestypewriter books

desk sofa
carpetcomputer

desk-chair bookshelf

floor-lamp
bed

dresser
clothes-hanger

Figure 6. Two-dimensional MDS from Co-occurrence data -Stress =0.17.
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Cluster Analyses
Hierarchical cluster analysis is another common method for identifying groups of items

on the basis of proximity data. Complete link hierarchical clustering solutions for the
rooms data and the co-occurrence data are shown in Figures 7 and 8, respectively.
Clusters are shown by the joining of lines emanating from the room descriptors. The fig-
ures may be interpreted as showing every descriptor in a separate cluster (at the left-hand
side) that become a series of hierarchically organized clusters as one moves to the right in
the figures. The figures do not show the final few steps which join the indicated clusters
into successively larger clusters until all items are in a single cluster. At the point where the
final clustering is shown, we see that there is a reasonable delineation of all five rooms.



146 Schvaneveldt

The cluster analysis is able to identify a separation of rooms where the activation meth-
ods and MDS could not. Of course, interpretation of the cluster solutions is required to
decide that the clustering should be stopped at the point shown in the figures. These solu-
tions are also not capable of revealing that some items (e.g., carpet, clock, sink) are com-
monly found in more than one room since the structure is strictly hierarchical. Nevenhe-
less, the clustering solutions do capture some of the "room" structure in both datasets.

Connectivity in Pathfinder Networks
Still another approach to identifying substructures in the datasets is to examine patterns

of connectivity in the networks generated by Pathfinder. Esposito (Chapter 6, this volume)
has investigated various graph-theoretic structures in an attempt to identify "meaningful"
clusters in Pathfinder networks. For illustration, a simpler approach is used here. Con-
sider the nodes that can be reached within a cenain number of links of a given node. This
criterion would define clusters of terms that are likely to be "good" clusters if the number of
links is small. Table 3 shows the result of using this criterion, collecting all nodes within
one link of a panicular node with the additional wrinkle that nodes that are only linked to a
node defined by the first step are also included in the cluster. An "orphan" node can only
join the node to which it is connected, so including the orphan node whenever the con-
nected node is included seems reasonable.

With one exception, the items included in the groups staning with the nodes clamped
on in the activation experiments constitute reasonable sets of items to accompany the stan-
ing node. The exception is found in the network derived from the Rooms data when bed is
the staning node. Examination of this network (Figure 1) shows that the problem lies in
the role clock plays in the network. Since several orphans are connected to clock, they will
all be included whenever clock is included.

These groups of items are not necessarily hierarchical in that the same descriptor can
occur in several different groups (notice the descriptor, carpet, in the network from the co-
occurrence data). The general tendency, with this method of defining clusters, is to include
too few items in the clusters. Still, unique clusters for every staning node can be gener-
ated, and including more than one staning node would generate still other unique clusters.

Conclusions

The Pathfinder networks appear to capture much of the information contained in the
complete connectionist networks in as much as similar states are reached in the two types of
networks as a result of activation. With the co-occurrence data, there were no substantial
differences between the stable states reached with the complete networks and the Pathfinder
networks. These similarities suggest that Pathfinder analysis could be a useful tool in
simplifying the complex networks that are often found in connectionist models. For ex-
ample, such simplifications may help to interpret the results of learning in such networks.

The panicular descriptors chosen are critical to the patterns reached as stable states in
activated networks. In panicular, sufficient negative connections must be present to "damp
out" the activation produced by positive connections. The undifferentiated living room,
bedroom, and office are illustrative of this lack of sufficient dampening in the experiments
reponed here.
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Table 3. Clusters from connectivity in Pathfinder networks.

Node:
telephone

books
sofa

drapes
cupboard

toilet
bed

desk-chair
easy-chair

stove

sink
scale

typewriter
clock

coffee-cup

coffeepot
dresser
oven

bookshelf
picture

ash tray
refrigerator
television
computer

desk

carpet
floor-lamp
fireplace
toaster
bathtub
hanger

so a
Rooms Co-oc

Net Net

bat.
Rooms

Net
Vo-oc

Net

(.)=Within one link plus orphans
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The panicular type of proximity data used does not appear to be critical. Similar results
are obtained from simple co-occurrence judgments compared with the rooms-based judg-
ments. In the two cases where there were differences, the co-occurrence data tended to
produce somewhat better results (see Tables 2 and 3).

Cluster analysis and connectivity in Pathfinder networks reveal clusters of items be-
longing to particular rooms, but activation methods and MDS do not. Apparently, different
information in the data is used by the activation methods and MDS in contrast with the
hierarchical clustering method and the Pathfinder networks. Elsewhere (Schvaneveldt et
al., 1989), we have discussed such differences between MDS and Pathfinder.

In a nutshell, MDS equally weights all of the data in determining a solution. There is a
sense in which all of the weights are also used by iterations of activation spreading in a
network, and to the extent that Pathfinder networks preserve the significant paths in more
complex networks, activation should act similarly in Pathfinder networks. In contrast, the
/ink structure of a Pathfinder network is more determined by the locations of the relatively
small data values (high co-occurrence for the positive links or low occurrence for the nega-
tive links). Thus Pathfinder connectivity and hierarchical clustering tend to identify items
that most frequently occur together. The constraints in MDS and activation methods are
much more complex, and as we have seen, not always appropriate.
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