


Chapter 3

Fuzzy PFNETs: Coping with Variability in Proximity Data

Chris Esposito

Many of the quantities that cognitive scientists try to measure are more evasive than the
physical constants measured by other sciences. The subjective similarity or distance mea-
surements that are used to generate a Pathfinder network are no exception. As soon as one
has decided to obtain similarity data from different individuals, one must also decide how
to deal with any individual differences in these data. Several possibilities present them-
selves. If variability across subjects is high, it may be more useful to treat the set of sub-

. jects as several groups instead of one. Another approach is to treat each individual's data
separately, generate individual solutions (Pathfinder networks, for example), and then
compare the individual solutions in an attempt to synthesize a group solution. Another ap-
proach is to combine the individual datasets before the scaling method is applied; averaging
the similarity ratings across subjects for each pair of items is a common step in preparing
data prior to using Pathfinder. The issues of whether to use intersubject variability or not,
and how to use it, must also be addressed.

The work to be presented in this chapter focuses on combining individual data matrices
into a composite matrix and using the variability between the individual matrices in generat-
ing the network. We also introduce a new generation parameter, z, and discuss how it's
value affects the generated network. To begin, we discuss some problems that arise from
an interaction between the edge membership rule and how intersubject rating variability is
used. Then we present some changes to the Pathfinder algorithms that add "missing"
edges and often improve the statistical fit between network solutions and the data matrix
they were derived from. Finally, some empirical evidence is presented to support the claim
that the statistical version of Pathfinder produces networks that fit the original data better
than networks generated by the nonstatisticaIversion of the algorithm.

FUZZYPF-An Interval-Based Version of Pathfinder

When gathering subjective similaritydata from several subjects, the standard procedure
for getting a representativecomposite matrix is to compute the average of the corresponding
elements in the individual subject matrices (Schvaneveldt, Durso, & DearhoIt, 1985). An-
other standard procedure is that the average is the only composite measure that is used; in-
tersubject variation for every pair is ignored. This has both advantages and disadvantages.
One of the claimed advantages is that for any given pair of items, the average retains what
is common among the individual ratings while filtering out relatively unimponant individual
differences. If the variation across subjects for a given pair is fairly small, this advantage is
probably real.

However, if there is substantial disagreement between subjects over the rating for a
particular item pair, then the amount of variability increases sharply. This raises two
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problems. First, given that the goal of the averaging is to get a representative composite
value, it is no longer clear that a point value (rather than an interval) can genuinelyrepresent
widely disparate ratings. The second problem flows from how the edge membership rule
compares path and edge lengths. The basic decision that occurs in generating a network is
that if a path length is less than the edge length, the edge is not added. The problem is that
any difference, no matter how small, is currently treated as if it were significant. As
pointed out in Roske-Hofstrand and Paap (Chapter 4, this volume), many subjects will as-
sign a slightly different score even to the same pair over time, so there appears to be an
irreducible amount of variability in the score-assigning process. Failing to properly take
this variability into account in network generation can result in edges being added to or
omitted from the network based on differences between edge and path lengths that are suf-
ficiently small as to not be significant. As previously mentioned, this can also reduce the fit
between the network and the original data.

The proposed solution to these problems is to replace the point values for edge and path
lengths with interval values constructed in such a way that both distance estimate intervals
contain the "real" or "most likely" values for edge or path lengths. The basic decision then
becomes one of comparing intervals to see if they overlap; if they do not and the path-
length interval is below the edge-length interval, the difference between them is sufficiently
large that it justifies not adding the edge. What follows below is a conceptual framework
for developing a revised version of Pathfinder that uses intervals instead of point values in
its decision making.

The basic model adopted is that for each edge (or pair of items) ij there is an indepen-
dent random variable RVij and that the set of rating values RVij takes on across subjects
constitutes a sample from the population of subjects of that type (e.g., the rating data for a
command pair across a sample of UNIX experts can be used to estimate the "true" rating
for that pair across the entire population of UNIX experts). The length of a path from node
i to node j is also a random variable Pij whose distribution is a function of the distributions
of its constituent edge random variables.

As we remarked above, one view of using Pathfinder is that it consists of a sequence of
decisions to be made, both by the user and the program. Several of these decisions are
critically relevant here. First, how do individual ratings for a pair get combined into a
composite? Second, how do individual edge lengths get combined into a path length?
Third, how do we compare edge and path lengths? The statistical versions of these ques-
tions are given below, and it is those we shall attempt to answer.

(1) What is the distribution for each random variable?

(2) What is the appropriate measure of central tendency for the random vari-
able? In other words, how do we compute its expected value?

(3) How do we determine the distribution for a path length given the distri-
butions for its edge lengths?

(4) Given path and edge distributions, how do we compare them?

Before we begin to answer these questions it should be stated that the answers to ques-
tions 2-4 will be much easier to come by if we can demonstrate either that the random vari-
ables are each normally distributed, or that the normal distribution is a good approximation.
The reason for this is that normal random variables are generally more well-behaved and
easier to manipulate than those with other distributions. For example, Freund (1971)
points out that normal random variables are closed under addition, minimum, and

maximum (the three basic operations in Pathfinder algorithms), while random variables
with other distributions, such as exponential or geometric, are not.

Let us begin to answer these questions by taking another look at the basic operation of
judging the similarity of two items. Without loss of generality, we can assume that these
judgments are done on a scale of 1 to 10, with 1 meaning not related and 10 meaning very
related. The ratings distribution across all pairs for any particular subject is generally bi-
modal, with one group of ratings at the high end and another group at the low end. This
suggests that, at one level, the decision being made is simply related versus unrelated; the
first outcome will be labeled successes, and the second outcome will be labeledfai/ures.
We can also divide the rating scale in such a way as to reflect this. Choose some position
on the rating scale and let all scores less than the scale midpoint represent the unrelated
outcome, with all scores greater than or equal to the midpoint as the related outcome.
Without loss of generality, we can assume that for the moment the chosen position is the
scale midpoint. Once the rating process has been recast in this way, a single rating of a
single pair has all the characteristics of a Bemoulli trial: there are two possible outcomes,
success (related) and failure (unrelated). If we repeat this procedure for a pair across n
subjects then we have all the ingredients of a binomialdistribution.

We are now in a position to answer the first question. As most statistics texts point out
(for example, see Mendenhall, McClave, & Ramey, 1977), the Central Limit Theorem
states that under certain conditions the normal distribution is a good approximation to the
binomial distribution. The three parameters in a binomial distribution are n, p, and q,
where p is the probability of success, q = I-p is the probability of failure, and n is the
number of trials. Since we use one trial per subject, this is also the number of subjects.
The two basic descriptors in a normal distribution are ~ and a, the mean and standard de-
viation. To determine whether the normal approximation will be adequate, calculate
~ = np and a = vnpq. If the inequality, 0 ~ ~ :t a ~ n, holds then the approximation
will be reasonably good (Mendenhall, McClave, & Ramey, 1977). Assume, for a mo-
ment, that p = q = 0.5. We shall determine the minimum value of n for the normal ap-
proximation to be acceptable. Taking the left half of the inequality first, we have 0 ~ ~ -
2a. Substituting our values ~ = 0.5n and a =vO.25n and simplifying, we get 0.4 ~ n.

So the left-hand inequality requires that the number of subjects is at least four. Taking the
right half of the inequality next, we have ~ + 2a ~ n. Substituting the same values for ~
and a and simplifying, we get 4 ~ n. The right-hand inequality also requires that the
number of subjects is at least four. For p = 0.5, as long as four or more subjects are
used, the normal distribution is an acceptable approximation.

A closer examination of these bimodal distributions for a subjects ratings across pairs is
likely to reveal that the region of the scale actually used for related judgments is much
smaller than the entire top half. On our example scale that goes from 1 to 10, even if we
require that related means a score of at least 9 (which leads to a p of 0.2), solving the above
inequality yields a requirement that n be at least 16, which is still a very modest re-
quirement.

Given that the assumption of a normal distribution is reasonable even for small num-
bers of subjects, we can now answer the other three questions posed earlier. If x is a nor-
mal random variable, then the appropriate measure of central tendency is the mean, or the
average of the sample values. Therefore, averaging individual ratings for a pair to get a
mean value is a defensible procedure. Since we are going to use sample means in calculat-
ing edge lengths and path lengths, the appropriate measure of variability is the equally fa-
miliar standard error of the sample mean, ai, the formula for which can be found in any
statistics text. As we shall see, an addition to the algorithm will be to calculate a matrix
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containing pairwise standard errors of the mean in addition to the means we are already
computing.

As defined in Schvaneveldt, Durso, and Dearholt (1987), the length of a path is the rth
root of the sum of the weights for the edges in the path, each raised to the rthpower, or the
maximum of these edge weights when r = 00. As pointed out earlier, the distribution of a
sum of normally distributed random variables is also normal, as is the maximum and mini-
mum. The mean (or expected value) of a sum of normal random variables is the sum of the
means. Also, the variance of such a sum is the sum of the variances. Unfortunately, this
result is exactly true only when the random variables in the sum are not raised to powers,
that is, when r = 1 or r = 00. The square of a normal random variable has a chi-square
distribution, rather than a normal one (Freund, 1971). However, the Central Limit Theo-
rem states that if a sample of n observations (with sample mean i) is drawn from a popula-
tion with an arbitrary distribution, finite mean J1.and standard deviation a, then as n in-
creases the sample mean i will be increasingly normally distributed with mean J1.and stan-
dard deviation al..Jn. As a result, apart from some minor modifications to be described
shonly, the path-length calculation does not change significantly.

At this point, let us review the decisions that have been made. Individual ratings are
averaged to obtain composite edge lengths. Both edges and paths are represented by nor-
mally distributed random variables, with the latter as the sum of the former. The only issue
left to resolve is how to compare an edge and a path and determine if one is shoner than
another. The initial impetus for this revision of Pathfinder along statistical lines was that
using point values to represent edge and path lengths led to some problems (e.g., the
omission of edges), so we have replaced these point values by distributions. However,
normal distributions extend infinitely in both directions, so a simple measure such as over-
lapping distributions goes too far in the opposite direction. The solution adopted in this
work is to take the central ponions of the distributions (the mean :t some user-specified
amount on either side) and compare those intervals. This has the advantage of capturing
the most likely values for edge and path lengths while being flexible enough to accommo-
date differing amounts of variability across different datasets and applications. An algo-
rithm that incorporates all of these features is described below.

The data collection procedure for a single individual is unchanged. Given the set of
individual distance matrices, we create two more matrices. The first is the average matrix
W, where Wij is the average of the corresponding entries in the subject matrices. The sec-
ond is the variation matrix V, where Vij is the value of one standard error of the mean for
that pair and sample size.

FUZZYPF accepts these two data matrices as input. In addition to the q and r parame-
ters, the user must specify the value of a third parameter z, which determines how much
variability the program will use in making edge membership decisions. The parameter is
called z because it determines how many standard errors the bounds on the edge weight in-
tervals will be from their respective means, that is, their z scores. In order to create inter-
vals of the desired size, the value ZVijis added to and subtracted from wij in order to create
the upper and lower bounds Wiju and WijZfor that edge weight, so that as z increases, the
intervals widen. The upper bound on the path length between nodes i andj (denoted Piju)
is the sum of the upper bounds on its constituent edge weights. Conversely, the lower
bound on path length Pijz is the sum of the lower bounds on its edge weights. The revised
edge membership rule is that an edge is added to the network if the edge weight interval is
less than or overlaps with the path-length interval. A necessary and sufficient condition for
this to occur is wijl ~ PijU'
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A somewhat surprising result is how little the network generation algorithms need to be
changed in order to accommodate the modificationsjust described. The one unfonunate re-
sult is that the amount of space required has gone up. Two additional n x n matrices are re-
quired, one to hold the lower bounds on the edge weights and one to hold the variation
matrix. The matrix that is used to hold the current minimum path lengths stans out holding
the upper bounds on edge lengths and is updated using these values as each algorithm pro-
ceeds. The most significant change in using Pathfinder is that the user must now choose a
value for the new zparameter. The next section examines some of the issues surrounding
this choice.

Choosing a z Value
The issues to be explored in this section deal with choosing a z value for the statistical

version of Pathfinder that was just described. It should be fairly evident from the descrip-
tion ofFUZZYPF that as z increases the intervals widen, and so it is increasingly likely that
they will overlap and the edge will be added. As Figure 1 indicates, this results in increas-
ingly dense networks as z increases. This raises the all too familiar question of what pa-
rameter value to choose. Some related questions are (1) how much improvement in net-
work fit does FUZZYPF provide over nonstatistical versions, and (2) how does this im-
provement vary as a function of z?
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Figure 1. Number of edges as a function of z value. PFNETs(r = 00,q = n-I).

A useful way of thinking about these questions is to look at the set of edges not present
in a network generated by a nonstatistical version of Pathfinder. These can be divided
roughly into two types. Type 1 edges are those that clearly don't belong in the network
because they are significantly longer than the shonest alternate paths. Type 2 edges are
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those that are longer than the shortest alternate paths by an insignificant amount. Since the
length differences are insignificant, the edge length and the path length should be
considered as actually tied and the edge should be added, which often also improves the fit
between the network solution and the original data. The goal is to find the z value that
results in adding all of the Type 2 edges but none of the Type 1 edges.

The attempts to answer these questions are admittedly more exploratory than final. The
approach used was to examine the fit between networks and original data matrices across
several domains and a wide variety of z values. The datasets and measures of fit used here
are also part of a larger study on the relationship between generation parameters, distance
measures, and measures of fit between networks and the original distance matrices. For
more details, see Esposito (Chapter 6, this volume). A brief summary of the relevant in-
formation is presented here.

The three domains used in this study were cities in New Mexico (20 terms, 12 sub-
jects), items of clothing (11 terms, 20 subjects), and countries (9 terms, 9 subjects). For
each domain, a set of networks was generated with q = n-l, r = 00,and z varying from
0.0 to 3.0 in 0.1 increments. For each network we derived a distance matrix using the
graph-theoretic definition of distance. Since the r value used in network generation entailed
making only ordinal assumptions about the data, Spearman's p statistic was used to mea-
sure the fit between the derived and the original distance matrices (p also makes only ordi-
nal assumptions).

Figure 2 presents a graph of fit as a function of z value for the three domains. Notice
first that for this set of graphs, r = 00and q = n-1. The leftmost data point (network) is
at z = O. Since variability is effectively ignored at this z value, for each domain this net-
work represents the PFNET(r = 00,q = n-l) as it would be calculated by any of the
"regular" versions of Pathfinder and will serve as a reference standard to compare to net-
works generated with other values of z.
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Figure 2. Network fit as a function of z value. PFNETs(r = 00,q = n-l).
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As z increases, the edge-based fit curve for each dataset rises above where it was when
z = 0, which strongly suggests that FUZZYPF produces networks that fit the original data
better than networks produced by the regular version. In each of these datasets there is a
fairly sharp rise in fit, followed by a leveling off, and then by a decline in fit as z gets rather
large. The decline is easy to explain. As z increases, the networks get progressively
denser. Since we are using a measure of fit that is based on the number of edges that sepa-
rate two nodes, denser networks mean that everything is closer together; at some suffi-
ciently large value of z, every pair of nodes will be nearly equidistant and so these distances
will not fit very well with the original data matrix.

If we use the technique of looking for "elbows" in a fit curve, then all three of these
curves have them, although different amounts of variability in the datasets means that they
occur at different z scores. However, Table 1 shows that the same rising and leveling off
in the number of edges added is also present. For the three domains used, the elbow in the
edge curve (Figure 1) occurs at roughly the same z score that it occurs at in the fit curve
(Figure 2). One can therefore make a case that a correspondence between the z value at
which an elbow occurs in the fit curve and in the edges-added curve indicates that this is the
z value required to create Type 2 edges in the network for that dataset and choice of q and r.

Table 1. Number of edges in various domains as a function of z value (values in
parentheses are numbers of nodes).

Conclusions

In this chapter we presented a revised version of Pathfinder in order to deal with some
statistical problems. The problems stem from the fact that there is often variability in sub-
jective data, and in the old algorithm this variability was ignored for lack of a principled
way of dealing with it. This often led to the omission of edges from the network because
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Domain

z value bank(20) fruit( 11) cities(20) clothing(11) countries(9)
0.00 20 20 19 20 16
0.20 23 20 20 21 17
0.40 23 20 20 21 17
0.60 24 20 21 22 18
0.80 26 22 23 22 19
1.00 26 22 28 23 19
1.20 27 22 33 23 20
1.40 27 22 35 23 20
1.60 30 22 39 23 20
1.80 31 22 44 23 21
2.00 32 22 46 23 23

Complete 190 110 190 110 72
Undirected Directed Undirected Directed Directed
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they were slightly longer than the shortest alternate path, even though the difference in
length was due to the random fluctuations in length rather than some statistically significant
difference in length. The structure of the generated network was therefore affected in un-
predictable ways that also often adversely affected the fit between the network scaling solu-
tion and the original data.

The new algorithm, FUZZYPF, explicitly incorporates a user-specified measure of
variability by replacing the point values for edge and path length with intervals of user-
specified width. The new criterion for edge membership in a Pathfinder network is that the
edge is included if its length interval overlaps with the path-length interval. This new al-
gorithm requires no more time than the old one, but does require two additional matrices,
one to hold the standard error matrix and the other to hold edge weight lower bounds.

As a test of FUZZYPF, note that when z = 0, all variability is ignored and this version
produces networks identical to the nonstatistical version. In order to compare the networks
produced by FUZZYPF with those produced by a regular version of Pathfinder, we took
five domains and computed the PFNET(r = 00,q = n-l) (with z = 0) for each one. We
then let the z value range between 0.1 and 3.0 in increments of 0.1 and computed the fit
(Spearman's p) between distance matrices derived from the networks and the original data.
In every domain, the fit value rose and then fell as z increased, supporting the contention
that for the "right" value of z, FUZZYPF produced better networks than the regular version
of Pathfinder.

Despite the successful results reported above, it should not be concluded that the issue
of how to deal with variability in subjective data when doing data scaling has been resolved
in any final sense. Several related issues and approaches that were not addressed in this
work are worth exploring. As mentioned at the beginning of this chapter, if between-sub-
ject variability is very high, a single network solution will not represent the group very
well. On the other hand, if variability is very low, then using the averaged distance matrix
by itself is probably sufficient. FUZZYPF offers the greatest advantage when the variabil-
ity is moderate, so a more precise understanding of the size of this "moderate" range would
be very useful. On a related note, different pairs of items will have differing amounts of
variability in their similarity ratings, so some idea of what parts of the network are stable
(less variable) and what parts are more variable would also be useful. A more general issue
is the role of variability in data scaling in general. Some measure of how sensitive a clus-
tering is to perturbations in the original distance data would be very useful. In addition, a
version of multidimensional scaling based on interval rather than point values would likely
produce some interesting results.
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