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Preface

The chapters in this book represent a sampling of theoretical, empirical, and applied
work with Pathfinder networks. These networks began in 1981 (Schvaneveldt & Durso,
1981) as an attempt to develop a network model for proximity data. The intervening years
have seen several developments of that original work. A theoretical paper relating Path-
finder networks to fundamental concepts in graph theory (Schvaneveldt, Dearholt, &
Durso, 1988) grew out of a conference organized by Frank Harary and Keith Phillips. The
chapters in this book represent a wide range of applications for network models.

The original motivation for developing Pathfinder grew out of our realization that
although network representations abound in theoretical work in cognitive psychology and
artificial intelligence, there were few methods for arriving at a network representation from
empirical data. Proximity data offer a convenient starting point for networks. Indeed,
proximity data serve as the building block for several interesting structural models such as
multidimensional scaling (MDS) and cluster analysis. Essentially, Pathfinder networks are
determined by identifying the proximities that provide the most efficient connections be-
tween the entities by considering the indirect connections provided by paths through other
entities. The resulting networks have several interesting properties (see Chapter 1), and
they have also proven to be useful in a variety of applications. There are now various al-
gorithms for deriving PFNETs in several computer languages running on several different
computers.l

There are a few features of this book that should be helpful to readers without much
background knowledge of graph theory. A brief primer on graph theory and Pathfinder
and a glossary can be found at the back of the book. References from all of the chapters
are compiled in a single reference section at the back of the book. Chapter 1 reviews some
definitions and properties of Pathfinder networks as well as some algorithms for deriving
these networks from proximity data. Chapter 2 is a general review of empirical work with
Pathfinder in cognitive modeling and an exploration of potential applications in social net-
works. The other chapters relate to several major themes.

Chapters 3, 4, and 5 address some methodological issues. Esposito (Chapter 3) devel-
ops and evaluates a version of Pathfinder that takes variability of proximity data into ac-
count. Roske-Hofstrand and Paap (Chapter 4) analyze some properties of proximity data
obtained by ratings and the implications for Pathfinder networks. Goldsmith and
Davenport (Chapter 5) present some measures of the similarity of two networks.

Chapters 6 through 10 report investigations of some basic phenomena in human mem-
ory. Esposito (Chapter 6) analyzes the relation between humanjudgments of the goodness
of categories and various formal characteristics of graphs. Cooke (Chapter 7) examines the
time required to judge that two concepts belong to the same category. Branaghan (Chapter
8) analyzes the ease with which lists of associations are learned. Rubin (Chapter 9)
investigates the strategies people use to search memory. Schvaneveldt (Chapter 10)
examines the representation of schemata in Pathfinder and connectionist style networks.

I Programs have been written in Pascal, C, LISP, and APL. Various versions of the programs run on IBM
PC, Apple Macintosh, and SUN Microsystems computers. Information on obtaining programs is avail-
able from: Interlink, Inc., P.O. Box 4086 UPB, Las Cruces, NM 88003-4086.

ix
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Chapters 11 through 16 address applications of Pathfinder to problems in knowledge
elicitation, information retrieval, and interface design. McDonald, Plate, and Schvaneveldt
(Chapter 11) extract associative information from text and use this information to resolve
word ambiguity. Fowler and Dearholt (Chapter 12) address the classic problem ofretriev-
ing information from large collections as in libraries. Kellogg and Breen (Chapter 13)
compare the models of systems to mental models of users. McDonald, Paap, and
McDonald (Chapter 14) attack the problem of establishing connections in Hypertext.
Gammack (Chapter 15) analyzes the use of different techniques for eliciting proximity in-
formation from an expert. Cooke (Chapter 16) develops a method for identifying the na-
ture of the relations between linked concepts in a network.

Chapters 17, IS, and 19 are concerned with still other aspects of knowledge represen-
tation. Goldsmith and Johnson (Chapter 17) investigate the use of networks and MDS
spaces to assess classroom learning. Onorato (Chapter IS) analyzes the ways in which
people organize information depending on the purpose of the information. Dayton, Durso,
and Shepard (Chapter 19) examine the differences in the way solvers and nonsolvers or-
ganize problem-relevant information.

Obviously, there are many interrelations among the various chapters. As an aid to see-
ing these relations and as an initial illustration of the use of Pathfinder, I constructed Figure
1. This figure shows a Pathfinder network depicting the close associations among the
chapters.

This figure can be used to find chapters that are closely related to other chapters. Sev-
eral groups of interrelated chapters can be identified in addition to the one I used to order
the chapters. It is obviously impossible to capture all of these relations in the linear order-
ing enforced on a book.

The development of Pathfinder and much of the research reported in this book have
been supported by the National Science Foundation (IST-S506706), the Air Force Human
Resources Laboratory (F33615-S4-C-0072 and F33615-S0-C-0004), Texas Instruments,
Inc., and the National Aeronautic and Space Administration (NAG 2-453). Such support
has been invaluable in the development of the methods and research.

I gratefully acknowledge the assistance of several people in assembling this book.
Derek Partridge encouraged me to undertake the project in the first place. Most of the au-
thors reviewed one or more chapters in addition to writing their own. Douglas Nelson and
David Farwell also provided very helpful reviews. My associates here at New Mexico
State were invaluable in their assistance with all of the details and in the defense of concep-
tual coherence. I am particularly grateful to Bob Fiegel, Tarra Fiegel, Rebecca Gomez, and
Paula Moreland for their help. Thanks also to my wife, Ann, and daughter, Susan, for
their love and support.

R. Schvaneveldt
April 11, 1989
Las Cruces, New Mexico
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Figure I. The modified PFNET(r = 00,q = n-l) for the chapters in this book.

To construct Figure 1, I first made a list of the three chapters most closely related to
each chapter. This ordered list of associations was used to construct a matrix of proximity
data where an entry was 1,2, or 3 if the chapter on the column was the first, second, or
third most associated with the chapter on the row. Other entries were treated as infinite.
This matrix was non-symmetrical and the Pathfinder network that resulted from analyzing
the matrix had directed links. However, I was not able to interpret the directions of the
links so I made all of the links undirected as shown in the figure.
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Chapter 1

Properties of Pathfinder Networks

Donald W. Dearholt and Roger W. Schvaneveldt

Network models have played important roles in various areas of cognitive science and
computer science. In cognitive psychology and artificial intelligence, network representa-
tions of concepts stored in semantic memory have been used in models of memory retrieval
and human perfonnance (e.g., Anderson, 1983; Collins & Loftus, 1975; Collins &
Quillian, 1969; Friendly, 1977, 1979; Meyer & Schvaneveldt, 1976; Rumelhart &
McClelland, 1986), scene description and analysis (e.g., Brooks & Binford, 1980; Waltz,
1972; Winston, 1970), natural-language processing (e.g., Bobrow & Webber, 1980;
Fillenbaum & Rapoport, 1971; Kintsch, 1974; Quillian, 1967, 1969; Schank, 1972;
Woods, Kaplan, & Nash-Webber, 1972), and knowledge representation (e.g., Brachman,
1977, 1979; Fahlman, 1979; Fikes & Hendrix, 1977; Griffith, 1982; Novak, 1977;
Schmolze & Lipkis, 1983; Sowa, 1984; Woods, 1975).

In database systems, a network data model often results in efficient representations of
sets of concepts (Date, 1981; Ullman, 1982). Thus far, the network model incorporated in
database systems has been constructed with two primary objectives: providing efficient data
access for the anticipated user environment and making the most of the rather severe limita-
tions imposed by present computer operations and architecture. Although the network data
model used most frequently in database models (CODASYL, 1971) can support abstrac-
tions of essentially any type, there are constraints (for the purpose of modularity, simplicity
of definition, and hardware support) that must be circumvented by artificial programming
devices. Networks identifying relationships between data items have been proposed for
designing the logical schema of a database system (e.g., see Martin, 1977, Chapter 6) by
means of bubble charts. The bubble charts are used to indicate relationships between data
items (e.g., functional dependencies, primary keys, and secondary keys). The bubble
charts are usually viewed as an intennediate step in the development of a logical schema.
Clustering strategies for data items have been investigated and proposed for improving ex-
pected retrieval time, based on the estimated likelihood of retrieval of data items contingent
upon the retrieval of other data items (e.g., Navathe & Fry, 1976; Schkolnick, 1977).

Recently developed techniques from our laboratory and elsewhere allow researchers to
derive networks from the same proximity data employed by multidimensional scaling
(Dearholt, Schvaneveldt, & Durso, 1985; Hutchinson, 1989; Schvaneveldt, Dearholt, &
Durso, 1988; Schvaneveldt & Durso, 1981; Schvaneveldt, Durso, & Dearholt, 1989).

Networks and Proximity Data

Hutchinson's NETSCAL procedure (Hutchinson, 1981, 1989), which makes ordinal
data assumptions, is based on a theorem of Hakimi and Yau (1964) regarding the distance
matrix of a graph and its realizability. The distance metric used by Hakimi and Yau is the
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sum of edge weights along a path, so that the distance between nodes is the (minimum)
sum of the weights (distances) of the edges along a path between the nodes. This measure
of path length is appropriate for ratio-scale data. Hutchinson. however, also used a dis-
tance metric in which the distance between nodes is the smallest maximum weight along
any of the paths between the two nodes. This path-length measure is appropriate for ordi-
nal as well as ratio-scale data. A serious shortcoming of Hutchinson's work is that his
Corollary I considers triangle inequalities of only two-link paths. That is, the triangle
inequality can be violated in paths having three or more links in Hutchinson's networks.
This seems to be an unfortunate limitation, inappropriate for the scaling of data, and per-
haps also for cognitive modeling. although psychological proximity may not always obey
the triangle inequality (Tversky, 1977;Tversky & Gati, 1982).

The triangle inequality can be viewed in three different domains. The first, and the
sparsest, is in euclidean space. as addressed by Hakimi and Yau (1964), in which the tri-
angle inequality must always be satisfied. The second is the class of problems in which
measures of similarity or "distance" are measured objectively by set intersections; for most
such problems, there is no expectation of transitivity holding. so that there is likewise no
expectation that the triangle inequality will be satisfied, either. That is, if we know the in-
tersections of sets A and B, and of Band C, we do not generally know anything about the
intersection of sets A and C. The information retrieval application to be discussed in detail
in the chapter by Fowler and Dearholt (Chapter 12, this volume) is an example of such a
problem in which the triangle inequality may be violated. The third domain is that of sub-
jective estimates of similarity, in which data frequently show violations of the triangle
inequality. Philosophically, it is attractive to use geodetic distance measures. in which the
distance between each pair of nodes is considered to be the length of the shortest path avail-
able between those nodes; indeed, in graph theory this has been the usual definition of dis-
tance. Then. a violation of some triangle inequality is never a part of a path between any
pair of nodes. because a shorter alternative path is always available. Thus the omission of
the edges which violate some triangle inequality in a network assures the preservation of
the (geodetic) distances between all pairs of nodes and provides a simpler structure which
possesses precisely those edges which are responsible for the most economical paths
(Schvaneveldt, Dearholt, & Durso, 1988).

The links that are omitted include those due to differences on two or more separable
dimensions, in which the triangle inequality is expected to be violated. as discussed by
Tversky and Gati (1982). That is, if A and B are judged to be similar because of feature x,
and Band C are judged to be similar because of feature y, then A and C will normally be
judged to be less similar than the triangle inequality would indicate. Thus if salient asso-
ciations are linked in a graph paradigm, the absence of a link can denote a difference in the
basis for judged similarity.

We have developed a procedure called Pathfinder (several equivalent procedures, ac-
tually) to generate a class of networks called PFNETs, which are based on estimates or
measures of distances between pairs of entities. This procedure allows a spectrum of as-
sumptions to be made about the data, including ordinal and ratio properties. The data re-
quired are either similarities or distances. Similarities can be obtained either from a sub-
ject's estimates of the similarity of each pair of entities in the set or from a measure of set
intersections. Distances can be obtained in some domains by estimating or computing ap-
propriate differences between all pairs of entities. The result of the Pathfinder procedure is
a network which is either a directed graph (if the similarity or distance matrix is not sym-
metrical) or an undirected graph otherwise. Each entity in the set is represented as a node
in the network, and each link that is entered in the network has a weight value determined

by the distance between the two entities so linked. Our network generation procedure in-
corporates two parameters. The first, the Minkowski r-metric, determines how distance
between two nodes not directly linked is computed. The weight of a path with weights wI,
w2 , wk is:

k l/r

W(P)=

(
~W~

]1=1

For r = 1, the path weight is the sum of the link weights along the path; for r = 2, the
pathweightis computedas euclideandistanceis computed;andfor r = 00,the path weight
is the same as the maximum weight associated with any link along the path. We will use
"distance" in this chapter to mean the Minkowski distance (geodetic). which depends upon
the value of the r-metric. The second parameter is the q parameter, which is a limit on the
number of links in the paths examined in constructing a network. Its value determines the
maximum number of links in paths in which the triangle inequalities are guaranteed to be
satisfied in the resulting network. Our procedure generates families of PFNETs, and we
can generate Hutchinson's (1989) networks as a special case with r = 00and q = 2.

The links omitted from a PFNET are omitted because they violate a triangle inequality
involving q or fewer links. These omissions preserve all (geodetic) distances from the
original data, however. and because not all links are present in most PFNETs. structural
features are easier to ascertain. If a distance between two nodes not directly linked must be
computed from the PFNET, it is computed using the Minkowski metric. resulting in a com-
puted distance less than that givenexplicitly in the original data.

Advantages of PFNETs include (1) the capability of directly modeling asymmetrical
relationships (Hutchinson. 1981; Tversky. 1977), which is more difficult with multidi-
mensional scaling (Constantine & Gower, 1978; Harshman, Green, Wind, & Lundy.
1982; Krumhansl. 1978); (2) the provision for a complementary alternative to multidimen-
sional scaling which often provides a more accurate representation of local data relation-
ships than does multidimensional scaling; since multidimensional scaling must move data
points to minimize a global error criterion, the resulting relationships between neighboring
points is often significantly different than the original data would indicate; (3) the fact that
hierarchical constraints in most cluster analysis techniquesdo not apply to PFNETs; (4) the
representation of the most "salient" relationships present in the data; (5) the provision for a
new paradigm in studying models of classification; and (6) the provision for a more
quantitative paradigm for some of the issues in which networks have been invoked qualita-
tively or designed intuitively.

From the viewpoint of cognitive modeling, a disadvantage of PFNETs in the present
state of development is that we have no way of knowing the features upon which similarity
judgments are made. Thus the semantic content of links is not easily discernible (but see
Cooke. Chapter 16, this volume). The empirical data we have collected, however, should
be viewed as similarity estimates having components which may be unknown; but the use
of such data seems important in bridging the gap between the more standard semantic net-
works (in which the researcher labels links according to his preferences or beliefs at the
time) and a more objective representation of the knowledge of interest. For domains in
which objective measures of distance are available. PFNETs provide unique representa-
tions of underlying structure not obtainable from any other scaling method.
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Definitions and Alternatives

That is, the distance between two nodes is the weight of the smallest path between those
nodes, with all path weights calculated using the (same) appropriate r-metric.

The r-metric and the q parameter provide the elements needed to assure that the net-
works generated from a particular set of proximity data possess the metric properties dis-
cussed in Hakimi and Yau (1964), with the following provisions:

1. The distance from a node to itself is assumed to be zero.

2. The data matrix must be symmetric so that the PFNET is undirected;
then the distance between any pair of nodes is independent of direction.

3. The triangle inequality is satisfied for all paths having as many as q
edges. To assure that no triangle inequalities whatsoever are violated, q
can be set to the number of nodes less one.

In this section we present definitions to provide the proper foundation for the genera-
tion procedures and theorems that follow. A PFNET has n nodes, denoted Nt>N2,''', Nn
(or Na, Nb,''')' A link is an association between a pair of nodes which can be either undi-
rected or directed. A directed link is called an are, and an undirected link is called an edge.
In this chapter we will deal mainly with networks having undirected links, or edges, but
some of the definitions are more general, and a few examples of directed networks will be
given to illustrate this generality. In this spirit, links are labeled eij' for the edge between
Ni and Nj (or for the arc from Ni to Nj). Ni and Nj are end nodes of the link eij' The dis-
tance from node Ni to Nj (along the link ~ij?is the weight wij' and these weights are often
written in matrix form as an n x n matrix W. The elements of W can be considered as dis-
tances between nodes along the direct paths between every pair of nodes. The distances are
often considered as dissimilarities, and W is called either the adjacency or weight matrix.
We assume that wii =0 and wi" > 0 for 1 :>;i, j:>;n where i ~ j. If this matrix is sym-
metric, then a PFNET derived from it is an undirected network. Typically the distance
measures (weights) for each pair of entities (nodes) are found either empirically, from simi-
larity estimates by human subjects, or analytically, using some appropriate measure of set
intersection and set union, or some distance metric between entities.

A path from node Na to node Ne, passing through nodes Nb, Nc, and Nd, is denoted by
Pabcde(if the intermediate nodes are important) or Paeotherwise. The former presumes the
existence of edges eab,ebc, ecd,and ede (either undirected or with appropriate directions),
whereas Paepresumes the existence of some unspecified set of edges (or arcs) connecting
Na and Ne. The weight of a path P is denoted W(Pae)' and the function W(P) is determined
by the r-metric and the weights Wij'

The triangle inequality is incorporated into our generation procedure by means of the q
parameter.

Definition 1
A network is q-triangular if and only if all possible triangle inequalities involving paths

with m :>;q links are satisfied, using links and weights in the graph and the r-metric
chosen. An example is the triangle inequality

l/r

(
r r r

)Wae:>; wab+wbc +",+Wct

For situations in which these metric axioms are satisfied, the concept of distance along
a path is the same as the weight of that path. Because the r-metric can take on values from
one through infinity, and the q parameter can take on values from one through the number
of nodes less one, many different PFNETs can be constructed from a given set of proxim-
ity data. However, different values of rand q can result in the generation of the same
(isomorphic) PFNETs. Frequently, important information from a given set of proximity
data can be obtained from different PFNETs, constructed using different values of rand q.
Thus it is often not essential that particular choices for rand q be made, to the exclusion of
other values. Furthermore, it is sometimes desirable (in cognitive modeling, for example)
to violate the metric axioms presented above (also in Hakimi & Yau, 1964; and in Tversky
& Gati, 1982). The possibility of constructing directed PFNETs from asymmetric proxim-
ity data and (independently) of varying the q parameter provide ways of violating these ax-
ioms which correspond to observations about human performance (see, for example,
Ortony, 1979; Tversky, 1977; and Tversky & Gati, 1982). Modeling traffic flow on one-
way streets provides another example in which asymmetric data are relevant.

Definition 3
A PFNET(r, q) is a septuple (N, E, W, LLR, LMR, r, q) in which:

N is the set of nodes (concepts), denoted Ni;

E is a square matrix representing names of links in the complete graph (i.e.,
eij is the name of the link connecting nodes Ni and Nj);

W is the square weight matrix, and its entries are the weights associated
with the links in the corresponding positions of the E matrix. The
weights on the main diagonal are assumed to be zero, and the remaining
weights are assumed to be finite and nonnegative. Thus Wij is the
weight of link eij;

LLR, the link-labeling rule, is the procedure used to determine a label for
each link, according to some classification scheme;

LMR, the link-membership rule, is the procedure used to determine whether
or not each element of the E matrix is added to the PFNET(r, q);

r is the value of the r-metric, and 1 :>;r :>;00;

q is the value of the q parameter, and q E {I, 2, ..., n-l}, where n is the
number of nodes.

which is a constraint on the weights of two altemate paths between nodes Na and Ne' For
a graph with n nodes, there can be at most n-l edges in any path in which there is no cycle.
Thus the q parameter is at most n-l. Geodetic distances in the network are unchanged if
edges which would violate triangle inequalities are omitted.

Definition 2

The (geodetic) network distance dij between nodes Ni and Nj is computed as a function
of all path weights W(Pij), for all paths Pij which connect nodes Ni and Nj as

D I'i=MIN (W(P. . \ ), W(P. . 2)' ... , W(P.. )), I) I) I) m
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Definition 4
The link-membership rule (LMR) for PFNETs (either directed or undirected) is given

by the following procedure:

1. Define a network consisting of all nodes (concepts) Nj. but no links;

2. Order all elements eij of the E matrix in some nondecreasing order of
their associated weights wij;

3. Consider each eli' and include eij in the PFNET(r, q), if and only if eij
provides a path lrom Ni to Nj which has a weight at least as small as the
weight of any other path havmg no more than q links, using the r-metric
to compute the weights of multiple-linkpaths.

This definition is useful primarily in establishing the concepts associated with Path-
finder networks; computationally efficient algorithms for generating PFNETs will be given
in the next section. As an example of the LMR, consider the weight matrix:

Figure 2. The PFNET(r = 1,q = 2) corresponding
to the complete graph of Figure 1.

o 1 4 5
2 0 2 4

W= 1401
5 3 1 0 Generation Algorithms for PFNETs

A part of our generation procedure, for either directed or undirected PFNETs, requires
matrix operations using the weight matrix W. The purpose of these operations is to deter-
mine which links providing alternate paths are in the PFNET. For either directed or undi-
rected PFNETs, the matrix operations can be used to determine link membership. These
matrix operations find the minimum-weight path(s) having i ~ q links between every pair of
nodes, and finally, the minimum-weight path(s) having no more than q edges. The matrix
computations are determined partly by the r-metric.

Definition 5
Wi+l = W @ Wi is computed as follows:

wjt1 =MIN (Wjm{ +

i r

)
1/r

(w mk) for 1 ~ m ~ n

for the nodes Nb Nz, N3, and N4. The complete graph is as shown in Figure 1. The arcs
are not labeled because we have not yet developed a labeling rule for directed PFNETs.
(Labeling edges with some LLR does not affect the edge membership of an undirected
PFNET, because the edges are put there by the LMR, which makes no use of edge labels.)

where w. ~ 0 and W Ik
' ~ O.

Jm m

Figure 1. Complete graph for the example.

Let r = 1 and q = 2. Applying the link membership rule, the PFNET(r = 1, q = 2)
shown in Figure 2 is obtained. Note that e]4 is in the PFNET because its weight ties with
the weight of the path P 124,even though the arc e24 is not itself in the PFNET; if it were in
the PFNET, it would violate the triangle inequality for the alternative path P234. The path
P1234has less weight, but is not considered because it has three arcs, and for this example
we assumed q = 2. The PFNET in Figure 2 is two-triangular, since the q parameter is two.

Definition 6
The minimum-distance matrix for paths not exceeding i links is denoted Di, and its ele-

ments are computed as follows:
.

(
1 2 i

)dj~=MIN Wjk'Wjk'..., Wjk forj*k

If the weight matrix W is asymmetric, then the corresponding PFNET(r, q) is directed.
The generation procedure we have been using for such data does not label the arcs (a suit-
able labeling rule is under development). Thus the matrix operations described in defini-
tions 5 and 6 provide the basis of a link membership rule for either directed or undirected
PFNETs. Data required are (1) a weight (distance between nodes) matrix W, either sym-
metric or asymmetric, and (2) values for the r-metric and the q parameter. The following
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procedure removes links violating triangle inequalities as paths involving more links are
considered.

Definition 8
Let E(wj) denote the equivalence class of edges having the weight value Wj. Edges in a

given equivalence class are assumed to have equal saliency.
The purpose of considering the NSLs defined by increasing equivalence class (weight)

values is to establish the most salient edges first. The NSLs are merged as successive
equivalence classes and are considered until the entire graph is connected. The NSLs also
provide clustering infonnation, as discussed later in this chapter in the section entitled Path-
finder Networks and Hierarchical Clustering.

The following definitions, concerned with edge labeling, distinguish three ways of in-
corporating nodes into a PFNET during construction.

Definition 9
For an undirected PFNET, a primary edge is, for some equivalence class of edges

E(wj), the only path joining a node in some NSL to a single-node NSL. That is, a primary
edge provides the only path between a node (NSL having node size one) and some other
NSL for a particular equivalence class. A primary edge is labeled PRI. Within a network
already constructed, an edge eij is primary if its weight is smaller than the weight of any
other edge incident to one or bOthof the nodes Nj or Nj-

Definition 10
For an undirected PFNET, a secondary edge is, for some equivalence class E(wj), an

edge joining node sublists which were distinct before E(wj) is considered, and in which
there are either alternate paths to the end nodes, or the node size of both NSLs exceeds one.
A secondary edge is labeled SEC. For primary or secondary edges, no alternative path ex-
ists in a smaller equivalence class. The primary edges are seen to provide the lowest cost
connections between nodes, and the secondary edges either tie for low cost, or provide
paths which connect nodes already connected to other nodes in a smaller (prior) equiva-
lence class. For primary and secondary edges, inclusion into the PFNET is accomplished
in stages by fonning and merging NSLs much as clusters are merged in a hierarchical
clustering scheme.

Procedure PATHFINDER PFNET(r, q):
(without link labeling, for either symmetric or asymmetric W matrix)

1. Compute w2, D2, W3, D3,..., Wq,Dq;

2. Comparing elements of Dq and WI, wherever dij = Wjj'then mark ejj as
a link in PFNET(r, q).

Actually, WI is the weight matrix, and DI is identical to it, because it is the distance
matrix for paths having one link. w2 must be computed, however, and provides the mini-
mum cost for paths between each pair of nodes having exactly two links. D2 provides the
lower cost of either one-link or two-link paths for each pair of nodes. Similarly, D3 pro-
vides the lowest cost of paths having one, two, or three links, and finally, Dn-I (where n is
the number of nodes) would provide the lowest cost of paths having any number of links
(without cycles) between every pair of nodes. Thus the second step of the procedure as-
sures that every link ejj in PFNET(r, q) provides a path between nodes Nj and Nj, which
has a weight as small as any altemative path having from two to as many as q links. As
each Wj+I and Dj+I are computed from wj and Dj, links may be removed from the
PFNET(r, q), but they cannot be added. Those links which are removed are called redun-
dant links, because they do not affect any of the distances between nodes (Schvaneveldt,
Dearholt, & Durso, 1988).

This procedure, which is an LMR, can be viewed as a means of uncovering the links
responsible for the distance measurements between nodes and omitting all the other links;
but if there are multiple paths having the same minimum cost, then links responsible for
those ties are included, so that there is no arbitrary aspect to the LMR. As the value of the
q parameter increases, links are removed as violations of the triangle inequality are
discovered in longer and longer paths by the matrix operations. The distance matrix Dj, for
i < n-l, may incorporate distances in which links not in the network are utilized as a part of
the distance computation between a pair of nodes. This can be so only for cases in which
there is a shorter alternative path having more than i links. Therefore, when q = n-l,
every entry in Dn-l is computed using links which are in the network; otherwise, it would
mean that some path not in the network is shorter than any path between the two nodes of
interest composed of links which are in the network. The procedure guarantees that the
weights of the shortest paths having q or fewer links are entered in the Dq matrix at each
step.

For situations in which the W matrix must be symmetric (such as the infonnation re-
trieval problem discussed in the chapter by Fowler and Dearholt (Chapter 12, this volume),
or may be assumed to be symmetric, we have developed an LLR which yields important
structural infonnation. An LLR based on a node-covering paradigm is included as part of a
generation procedure which will be given after a few more definitions.

Definition 7

A set of nodes (of an undirected PFNET) called a node sublist is a connected subgraph
(at a stage of development) of a PFNET, and is denoted by NSL. A family of NSLs parti-
tions the set of nodes, and when an edge joins nodes in two different NSLs, the two NSLs
merge to fonn a single NSL, which consists of all of the nodes in the two original NSLs.

Definition 11
For an undirected PFNET, a tertiary edge is, for some equivalence class E(wj), a link

joining nodes within a single NSL, so that alternate paths existed before the class E(wj) is
considered. A tertiary edge is labeled TER.

For undirected PFNETs, the following more detailed procedure is equivalent to the
LMR of Definition 4. This procedure also provides an LLR for the labeling of edges as
PRI, SEC, or TER. This LLR has proven helpful in identifying categories and subcate-
gories within the data, and will be related to hierarchical clustering discussed in the section
entitled Pathfinder Networks and Hierarchical Clustering later in this chapter. Variations of
the procedure have been implemented in APL, LISP, Pascal, and C. The concepts (nodes)
N, the weight matrix W, and the values for the r-metric and q parameter are assumed to be
given, and W is assumed to be symmetrical. This procedure is called agglomerative be-
cause it begins with each node or object placed in its own cluster, gradually merging these
atomic clusters into larger and larger clusters until all nodes are merged into a single cluster
or a connected graph (Jain & Dubes, 1988).
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Procedure PATHFINDER PFNET(r, q)
(with link labeling, for symmetric matrix W)

1. Define a network consisting of all nodes Ni, but no edges;

2. Partition all edges into equivalence classes E(wJ according to the values
of the weights wi' and arrange these equivalence classes in increasing
order E(wi)' E(wj)' ...according to the weight value of each class;

3. The initial node sublists are the individual nodes themselves, with no
edges (equivalent to the weak clustering of Johnson, 1967);

4. Construct an incidence table, in which the nodes are column headings,
and the edges, ordered by equivalence class according to weight values,
are row headings. All edges in E(wl), the equivalence class having the
smallest weight value, are listed as the first rows of the table;

5. For each edge eij in E(w.), place a check mark in columns Ni and Nj;
6. Any column with exactly one check mark in it identifies a primary edge,

which is labeled PRI;

7. All other edges in E(wl) are labeled SEC;
8. The nodes in each NSL are marked with a symbol designating member-

ship in the appropriate NSL;
9. All edges in E(wI) are added to the PFNET;

Beginning of Loop:
For each equivalence class E(wi)' taken in increasing order of the weight values, do:

10. If there is only a single NSL (i.e., if all nodes are connected), then all
remaining edges which have not been entered into the network as pri-
mary or secondary edges are considered as candidates for tertiary edges,
and go to Step 15;

11. List the edges in E(wi) as row headings below the edges in E(wi_I)' and
put check marks in the columns of the end nodes for each edge;

12. Any column with only one check mark throughout, for an edge in
E(wi), identifies a new primary edge which is labeled PRI, and is en-
tered into the network;

13. Any edge in E(wJ which connects two distinct NSLs, each having more
than one node (as determined in E(wi)' is labeled SEC and is entered
into the network as a secondary edge (each unlabeled edge is a candidate
tertiary edge, connecting nodes within some NSL);

14. The NSLs are relabeled to indicate the merging which has occurred as a
result of entering new PRIor SEC edges into the network (note that an
NSL can never split-the NSL structure is modified only by PRIor
SEC edges merging two NSLs into a new, larger NSL which contains
all nodes of both parent NSLs from the prior equivalence class);

End of Loop;
15. Compute Wqand Dq;

16. Wherever Wij (from WI) =dij (from Dq) and eij has not been previously
labeled, then label eij as TER and enter it into die network;

End of Procedure.

The strategy used for tertiary edges (steps 15 and 16of the procedure) could have been
used to determine link membership for the entire PFNET (as in the earlier procedure for
either directed or undirected PFNETs), but the disadvantage of this approach is that the
procedure to label edges is less clear. Labeling edges after generation of the PFNET re-
quires the use of a shortest-path algorithm. On the other hand, the procedure described
above requires the matrix operations anyway, and thus appears cumbersome. From the
procedure, it can easily be determined that every PFNET is connected-when the last
NSLs are merged, the graph must be connected.

An example of the construction and labeling of an undirected PFNET is given now,
with the symmetric weight matrix:

019597
1 0 1 999
9 1 0 2 9 9

W=592019
99910 1
7 999 1 0

For computational simplicity in the example, suppose that r = 1 and q = 2. Considering
only edges in the upper triangular matrix because of symmetry, the equivalence classes are:

E(I): el2, e23, e45, e56
E(2): e34
E(5): el4
E(7): el6
E(9): eI3,eI5,e24,e25,e26,e35,e36,e46

The incidence table for E(I) is shown in Table 1.

Table 1. The incidence table for the first equivalence class E(1).

Because the columns under Nl, N3' N4' and N6 have only single check marks, the cor-
responding edges are primary. There are no secondary edges in E(I) for this example.
The next step is to label the nodes in the incidence table according to membership in an
NSL. For this example,thereare twoNSLsafterE(1) is considered. ThePFNET,after
Step 9, consists of the edges shown in Figure 3.

NSL 1 NSL 2

Equivalence Edge
Class EdRe NI N2 N3 N4 N5 N6 Label

E(1) el2 .J .J PRI

E(1) e23 .J .J PRI

E(1) e45 .J .J PRI

E(1) e56 .J .J PRI
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involving a zero-valued entry in Ware omitted from consideration in off-diagonal elements
of W because such paths really consist only of a single edge. Next, D2 is found by taking
the smaller value in each position of W and W2and noting from which matrix this smaller
distance came.

The equivalence class E(2) is considered next, and its (only) edge e34 is appended to
the edge-node table as the last row. For convenience, the NSL identifiers are placed above
the node identifiers. The incidence table is now as shown in Table 2.

Comparing elements of D2 to elements of W, the entries which are equal are in the locations
corresponding to e\2, el4' el6' e23' e25, e34, e36' e45' and e56. The edges in this list
which have not yet been labeled are labeled TER and are added to the PFNET, shown in fi-
nal form in Figure 4.

Equivalence
Class

E(1)

Table 2. The incidence table for the first two equivalence classes.

E(2)

Since no NSLs can be merged, and all edges have been considered, there can be no
more edges added, and the procedure terminates.

This network illustrates two aspects of the triangle inequality: No link violates the tri-
angle inequality considering paths of two links (q = 2), and some links do violate a triangle
inequality considering paths of three or more links. An example of the latter is el4' in
which wl4 = 5. An alternate (three-link) path is P1234, which has a weight of 4.
Similarly, w16 = 7 and the path P123456with weight of 6 illustrates the violation of a
triangle inequality involving a five-link path.

Since e34 connects nodes in two different NSLs, each having node size greater than
one, it is a secondary edge, and it is entered in the PFNET. Because it joins the only two
NSLs, none of the candidate edges in the remaining equivalence classes can be either pri-
mary or secondary edges. Thus we consider E(5), E(7), and E(9) together (reentering the
top of the loop at Step 10 in the procedure), because there is now only one NSL. We next
compute WZ=W @W as previously described, and

10 2 10 6 10
10 3 10 8

10 3 10
10 2

10

Fundamental PropertiesW2
10
2 10

10 3
6 10

10 8

10
3 10

10 2 10
It is appropriate to begin by showing that the two generation procedures just described

add precisely the same edges to the PFNET as the LMR given in Definition 4, for the situa-
tion in which the W matrix is symmetrical (the case in which both procedures apply).

Theorem 1

For a given r, q, and symmetric W, either of the PATHFINDER PFNET(r, q) proce-
dures given in the preceding section results in the same edges in the PFNET as does the

For r = I, the weight of a path is the sum of the weights of the edges along the path.
The entries on the main diagonal of W are not relevant, because they consist of two-edge
paths only in a degenerate sense: either (1) no edges are traversed from the indicated node,
or (2) an edge is traversed, but then immediately retraced. Similarly, two-edge paths

2 5 6 7
I - I 3 9 8

D2 = 2 I 2 3 9
5 3 2 - I 2
6 9 3 I - I
7 8 9 2

Figure3. ThePFNETafterE(I) isconsidered.

NSL I

Edge
Edge NI N2 N3 N4 N5 N6 Label

el2 V V PRI

e23 V V PRI

e45 V V PRI

e56 V V PRI I Figure 4. The labeled PFNET(r = I, q = 2) fortheexample.
e34 V V SEC
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LMR given in Definition 4. (Recall that one of the procedures is intended for either asym-
metric or symmetric weight matrices, and the other is only for symmetric matrices. An
asymmetric weight matrix yields directed networks, and a symmetric weight matrix yields
undirected networks, having labels on the edges if the latter procedure is used.)

Proof
We begin the proof by considering the procedure for symmetric W. The edges labeled

PRI and SEC, at the time oflabeling and entry into the PFNET, represent the only path, or
equal and minimum-cost paths, between the nodes involved. Because edges are considered
by equivalence classes of increasing weight, no edge to be added later can decrease the cost
of the direct path afforded by a single primary or secondary edge. A tertiary edge provides
a minimum-cost path alternative to multiple-edge paths of PRI and SEC edges. The matrix
operations in Step 15 of the generation procedure for symmetric weight matrices find all
edges which provide lowest-cost direct paths, considering all paths having up to q edges.
These matrix operations identify all edges in the PFNET(r, q), whether or not the weight
matrix W is symmetric, and independently of the edge labeling rule. If the edge labels are
not needed, then these matrix operations alone identify all edges providing minimum-cost
links between nodes, considering multiple-link paths of q or fewer edges. Thus the Path-
finder procedure used for asymmetric data, and the procedure for symmetric data, both re-
sult in the same LMR as given in Definition 4.0

By definition of the LMR, and as described in the procedure, edges providing alternate,
equal-cost paths are all entered in the PFNET. This feature eliminates a random or arbitrary
choice of edges to represent a particular association, and results in a unique network, given
a particular weight matrix W, and values for rand q.

A network of particular interest is PFNET(r = oo,q=n-I). This PFNET always has
the minimum number of edges, because the path-length metric is simply the value of the
maximum weight along the path (this is called the dominant metric), and no edge in the
PFNET can result in the violation of a triangle inequality for any path. The maximum
number of edges in a path without a cycle, for a graph having n nodes, is n-l. The edges
in an undirected PFNET(r = 00,q = n-I) are all labeled PRIor SEC, because (1) PRI and
SEC edges are added to the PFNET based on node-covering properties and are independent
of values of rand q, and (2) since TER edges always provide an alternate path to PRIor
SEC edges established in an earlier equivalence class, the path length with r = 00is always
less through the PRIor SEC edges. Thus tertiary edges never appear in an undirected
PFNET(r = 00,q = n-I). For a given symmetric weight matrix W, if PFNET(r, q) is
generated, then PFNET(r = 00,q = n-I) can always be found simply by deleting all edges
labeled TER in the PFNET(r, q).

Definition 12

A minimum-cost spanning tree (mintree) of an undirected PFNET is a connected graph
having no cycles in which (1) there is a path between any pair of nodes, and (2) the sum of
the weights associated with the edges is a minimum.

This definition is similar to that given in Even (1979, Chapter 2). A PFNET can have
several mintrees; a simple example is a PFNET in which each off-diagonal weight in W is
one. Then all potential edges are in the first (and only) equivalence class, all edges are sec-
ondary edges, and all edges are entered in the PFNET. Clearly there are several mintrees
for such a PFNET (which is the complete graph), although this is an extreme case.

Definition 13
The minimum-cost network (MCN) of an undirected PFNET(r, q) is the union of all

mintrees of the PFNET.

Theorem 2
For a given symmetric W, r, and q, the MCN of PFNET(r, q) is PFNET("", n-I).

Proof
Every primary edge is in every mintree, because a primary edge provides the lowest-

cost access to at least one of the end nodes responsible for the edge being labeled PRI.
Each secondary edge is in some mintree, because a secondary edge provides either (1) a
unique, lowest-cost path between two NSLs for which the node size is greater than one, or
(2) an equally lowest-cost alternative path between two NSLs, in which the alternatives are
provided by (secondary) edges in the same equivalence class. In the first case, the sec-
ondary edge is in every mintree; in the second case, alternative mintrees correspond to the
secondary edges providing alternative paths in the same equivalence class. A tertiary edge
cannot be in any mintree of PFNET(r, q), because such an edge provides an alternative
path (covering the same end nodes) to one already existing. Thus the tertiary edges always
form cycles, and there is always an alternative path to a tertiary edge which is composed of
primary and secondary edges established in earlier equivalence classes. Therefore the
PFNET(oo,n-l) is independent of the r-metric and the q parameter, and includes all pri-
mary and secondary edges (as does the MCN). 0

The significance of this result is that the PFNET which has fewest edges, the MCN, is
unique, provides all minimum-cost paths between nodes, has no violations of the triangle
inequality, and is the sparsest network which possesses these properties. For cognitive
modeling, the scaling of data, and for clustering, these properties of economy are signifi-
cant indeed.

Properties of Inclusion

The networks generated in Procedure PATHFINDER PFNET(r, q) possess properties
of inclusion, or nesting, as values of the r-metric and q parameter change.

Definition 14
A PFNETl is included in (or is a spanning subgraph of) PFNET2 if and only if:

(1) PFNETl and PFNET2 have the same set of nodes, and

(2) every link in PFNETl is also in PFNET2.
The first inclusion property to be discussed is related to the r-metric used in computing

path lengths within a PFNET.

Theorem 3

For a weight matrix W, PFNET(r2, q) is a spanning subgraph of PFNET(rl' q) if and
only if rl ~ r2.
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Therefore
Proof

Since edge labeling is not a consideration, we will show inclusion by using the Path-
finder procedure that uses only the matrix operations. First suppose that rr ~ r2, and that
eij is a link in PFNET(r2, q), then

w.. (r2) = d.~ (r2).IJ IJ

We must show that eij is also in PFNET(rl, q). The reason that eij is in PFNET(r2, q)
is that alternative paths having more than one link are at least as costly; these path lengths
are computed in w2, W3, ..., Wq. The following inequality is helpful:

I I

[
!.(w/1

]
;; ~

[
!.(w/2

]
;; if and only ifr1 ~ r2.

1=1 1=1

(
r2 r2w + w +...
I 2

l
+ Wr2)r2 ~ (wr1 + wr1 + ...

m I 2

I

+ wr~);;

which is true provided rl ~ r2, as given in the inequality. 0

An observation for the symmetric case, in which the edge-labeling procedure is used, is
that PFNET(r}. q) and PFNET(r2, q) share the same MCN, which is PFNET(oo,n-l).
Thus PFNET(rl, q) and PFNET(r2, q) have the same primary and secondary edges, and
may differ only in the tertiary edges, as discussed previously.

The second inclusion property concerns the q parameter, in a manner analogous to the
r-metric.

Theorem 4

For a weight matrix W, PFNET(r, q2) is a spanning subgraph of PFNET(r, ql) if and
only if ql ~ q2'

Proof
It is sufficient to observe that, as Wi+I is computed from Wi using the given r-metric,

links to the resulting PFNET cannot be added, but may be eliminated. This is true because
Wi and Di determine the links satisfying the triangle inequality considering paths of i or
fewer links. A potential link ejknot satisfyi~g such a triangle inequality results in an entry

~k ~ ~k

This inequality is well-known in mathematics, and a proof and references are given in
Schvaneveldt, Dearholt, and Durso (1988). Thus a given path that is longer than Wijusing
r =r2 is at least as long using r =rl' Therefore the matrix operations which identify
links by computing these alternative path lengths cannot result in a shorter alternative path,
and ~ijis in PFNET(rl' q) also. But suppose that the minimum-length paths connecting Ni
and ~ in PFNET(rl, q) and PFNET(r2, q) are different, because of a single link eij which
is in PFNET(rl, q) but is not in PFNET(r2, q). Therefore we know that

Note that, since rl ~ r2, the converse is not possible (because of the previous inequality);
that is, a link eijcannot be in PFNETh, q) without also being in PFNET(rl, q).

Now suppose that if er is in PFNET(r2, q), then ej"is also in PFNET(rl' q). Then any
path that exists in PFNEnr2, q) also exists in PFNET(r}. q). We must show that rl ~ r2'
Therefore

l
w..~ (wr2 + wr2 +... + Wr2)

r2
IJ 12m

implies

at step i, so that ejk will not be in PFNET(r, q = i). 0

The inclusion relations can be illustrated by means of a graph in two-dimensional
space. As shown in Figure 5, we will use the r-metric for the abscissa axis and the q pa-
rameter for the ordinate axis. Then the rand q values used for a particular PFNET are
plotted at the intersection of the two lines. The inclusion relations for other PFNETs com-
puted from the same data, but in which different values of rand q are used, are the rectan-
gular areas shown with hatch marks. The PFNET represented by the point (r, q) is a
spanning subgraph of every PFNET represented by the rand q values below and to the
left, since inclusion is transitive. Similarly, the PFNET represented by the point (r, q) in-
cludes every PFNET represented by the rand q values above and to the right. In practice,
the PFNET having fewest links (the MCN) is generated with rand q values substantially
smaller than the theoretical values of r = 00and q = n-l, which are the values guaranteed
to produce the MCN.

(

rl r 1w..~ w + w + ...
IJ I 2

over the same path in each network, by hypothesis.

l

+ wr~ YI

l

w.. (wr1 + wr1 +... + Wr1)rl
IJ 12m

and
l

(r2 r2 r2y

w.. > w + w +... + w 2
IJ 12m
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n-l

For the tertiary edges, the matrix operations can be expressed by the observation that ejj
is added to PFNETt(r, q) if and only if

(

K

J

llr

(

K

J

llr

bWjj ~ L(bwkl = b L(Wkl
k=1 k=1

where K ~ q, for any path connecting Nj and Nj- Both sides can be divided by b to obtain
the comparison

(

K

J

llr

Wjj ~ L(wk>'
k=1

Figure 5. Illustration of the inclusion relations.

Data Transformations and Network Structure
which is the inequality used to determine whether or not ejj is added to PFNET(r, q). Thus
ejj is either added to both networks, with the same label In each, or it is not added to ei-
tlier. 0

An important issue in data scaling and modeling concerns the effects upon network
structure of various types of transformations upon the proximity data. Uncertainty associ-
ated with the meaning of data values should be accommodated by appropriate options in the
scaling procedure.

Definition 15

Let T be a transformation to be applied to the elements Wjjof the weight matrix W, and
denote the transformed weight values as T(wjj) =tjt The transformed weight matrix is de-
noted Wt, and the resulting network is denoted by PFNETt.

The first result is that a multiplicative transformation preserves link structure for both
directed and undirected PFNETs, and edge labels are also preserved for undirected, labeled
PFNETs.

Theorem 5

Given nodes Nj and a weight matrix W, resulting in PFNET(r, q), and given the trans-
formation,

T: tjj = bWjjwhere b > 0,

then ejj is in PFNET(r, q) if and only if ejj is in PFNETt(r, q). If ejj is in both networks,
and if the networks are undirected and labeled, then it has the same label in both networks.

Proof
We first consider the undirected, labeled case. The transformation T can be viewed as

transforming the equivalence classes E(wj) into equivalence classes E(bwj). The trans-
formed (corresponding) equivalence classes are hence considered in the same order as the
original equivalence classes. Thus the construction of the incidence tables is identical for
both PFNET(r, q) and PFNETt(r, q) so the primary and secondary edge structure of the
two networks is isomorphic.

That arc structure is preserved for the directed PFNETs under multiplicative transfor-
mations is evident by referring to the matrix operations invoked for tertiary edges, in the
undirected case just discussed. The multiplier b factors out, and the decisions for all arcs
are the same, with or without the multiplier.

The other type of transformation we consider is a monotonic transformation T.
T: tjj =J(Wjj) so that,

If wab = wxy' then tab = t xy' and

If wab > wxy' then tab> txy.

Our second result is that, provided r = 00, a monotonic transformation preserves link
structure for both directed and undirected PFNETs, and preserves edge labels for undi-
rected, labeled PFNETs.

Theorem 6

Given nodes Nj and a weight matrix W, and given a monotonic transformation,

T: tjj =J(Wjj),

then ejj is in PFNET(r= 00,q) if andonly if ejj is in PFNETt(r= 00,q). If ejj is in both
networks, and if the networks are undirected and labeled, then it has the same label in both
networks.

Proof
We first consider the undirected, labeled case. The transformation T can be viewed as

transforming the equivalence classes E(wj) into equivalence classes E(f(wj». Furthermore,
the order of the transformed equivalence classes remains the same for the generation proce-
dure. Thus the incidence tables are the same for each network, so the primary and sec-
ondary edges are also the same for each network. With r = 00,the tertiary edges in the

q

2

1
I

1 2 3 .. . r 00
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PFNET are detennined by the matrix operations described earlier in the section entitled
Generation Algorithms for PFNETs, and the maximum weight on an edge in a path deter-
mines the cost of that path. But the transfonned maximum weight is the same as the maxi-
mum of the transfonned weights, since monotonic transfonnations preserve order. Thus
the same teniary edges are in the PFNET in either the transfonned version or the original
version. Therefore ejj is added to both networks, with the same label in each, or it is not
added to either.

To see that arc structure is preserved for the directed case, we note that a monotonic
transfonnation preserves order. Thus the same decisions are made regarding arc member-
shipon eithertheoriginaldataor thetransfonneddata,providedr = 00. 0

In considering propenies of data, ordinal data are presumed to be data in which the ex-
perimenter is confident that the data values are, at the minimum, in proper order. Further
claims on propenies of the data, such as the meaning of intervals or of ratios, however,
may not be warranted. For these cases, the PFNETs used should be constrained to those
in which r = 00. Ratio-scale data are data in which each data value is presumed to be within
a multiplicative constant of the "correct" value. For these types of data, any values of rand
q can be used in generating a PFNET, for a given data matrix, and the resulting PFNET is
independent of such multipliers.

Pathfinder Networks and Hierarchical Clustering

measuring the distance between two objects. Should this distance be (1) the smallest
distance between some object in one cluster and an object in the other cluster, as in the
minimum method; (2) the largest distance between an object in one cluster and an object in
the other cluster, as in the maximum or complete-link method; (3) the median distance of
the between-cluster distances between objects; or (4) some average distance, perhaps
weighted, of the distances between pairs of objects in which one object is in each cluster?
Choices (1), (2), and (3) require only ordinal propenies of data, while (4) requires ratio
propenies. The latter is not often assumed for subjective data, but for problems in which
objective data are available, then ratio assumptions are frequently appropriate. Because the
computations are simple, the minimum method and the maximum method, in the
tenninology of Johnson (1967), have been examined in great detail for many applications
of psychological proximity data.

An assumption made by Johnson (1967, p. 249) is that the off-diagonal distances in the
original matrix are all positive and distinct (the distances on the main diagonal are all as-
sumed to be zero). This assumption of distinctness of the off-diagonal distances is moti-
vated by his assumption that the data are strictly ordinal, in the sense that the subjects or re-
searchers can differentiate between each pair of entities. Nevenheless, we have found this
assumption to be unwarranted-real data we have collected have frequently exhibited mul-
tiple entries having the same values. Funhennore, data representing large systems are quite
likely to have large numbers of ties. Thus attempts to model proximity data must include
the general case in which data can exhibit ties. As illustrated in several of the examples in
this chapter, ties in the data are easily modeled in Pathfinder by including them as links in
the network (provided they offer paths having smallest weights between node sublists).

We will now review the agglomerative procedure described in Johnson (1967, p. 248)
for generating an RCS using the minimum method, although Johnson does not, in that ar-
ticle, begin from a general weight or adjacency matrix; instead, he shows only a distance
matrix which could have been reduced from anyone of a large number of different weight
matrices by application of the RCS procedure. Re assumes, however, that a weight matrix
is available at the beginning of the procedure. In the following statement of Johnson's pro-
cedure, the first part of each step is taken verbatim from his paper (1967); the parenthetical
comments concluding each step relate the tenninology he used to that used for Pathfinder
and also include additional comments intended to be helpful.

Johnson's HCS Procedure:

1. Clustering CO,with value 0, is the weak clustering. (It is called the
weak clustering because each object (node) is considered to be an indi-
vidual cluster. The value is simply the distance to other nodes, and cor-
responds to the equivalence classes discussed in the section Generation
Algorithms for PFNETs.)

2. Assume we are given the clustering 0-1 with the similarity function d,
defined for all objects or clusters in Cq. Let aj be a minimal nonzero
entry in the matrix. Merge the pair of objects and/or clusters with dis-
tance a. to create Cj, of value aj- (This step is ambivalent, because "a
minima1 nonzero entry" seems to imply that there could be ties in the
data, but Johnson specifically excludes ties in his discussion of cluster-
ing. The merging of two clusters can be considered equivalent to the
joining of two NSLs with an edge in the graphical paradigm of Path-
finder. Johnson's similarity function corresponds to the distance matrix
of the Pathfinder procedure.)

For approximately two decades now, hierarchical clustering has been an important tool
in the analysis of proximity data. For certain types of data, it is very appropriate and leads
to meaningful clusters, or more precisely, to meaningful families of clusters. The purpose
of this section is to explicate the relationships between hierarchical clustering and Path-
finder networks. We will show that Pathfinder networks can provide the same infonnation
that is available in the minimum method of Johnson (1967), also called the single-linkage
(or single-link) method (Ling, 1972; Sokal & Sneath, 1963). Furthennore, we will show
that hierarchical clustering cannot provide the structural infonnation available in Pathfinder
networks.

For hierarchical clustering schemes (abbreviated RCS for convenience), distance is re-
gardedas beingthe primaryfeatureof interest. For Pathfindernetworks,however,both
structural propenies and distance are regarded as important. As shown in the preceding
section, the structure of a Pathfinder network is invariant under multiplicative transfonna-
tions of the weight matrix; and for r = 00,the structure is invariant under monotonic trans-
fonnations of the weight matrix. Pathfinder networks maintain the original (most salient)
proximities (associations) of the data by preserving all minimum-cost paths, thus support-
ing the representation of these associations explicitly in the network (as shown in Theorem
2, each Pathfinder network contains all mintrees). Thus geodetic paths (minimum distance
paths between each pair of nodes) are preserved in Pathfinder networks, and the computa-
tion ofthe distances is a part of the generation procedure (Step 15). But why, if the scaling
of data is the objective, should organization be of any interest or consequence when dis-
tances are all that is required for clustering? The answer lies in the origin of Pathfinder net-
works in modeling the organization of human semanticmemory and in other applications of
these networks which have been explored recently.

We will use object (in the same way as Johnson, 1967) to mean either a single entity or
node, or a cluster of entities or nodes; the context will be sufficient to establish the precise
meaning if it is imponant. A complication for RCS and Pathfinder is the question of
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modifying Step 2 of Johnson's procedure, we obtain a version of his minimum method
which models ties in the proximity data. This modified step is:

2'. Assume we are given the clustering 0-1 with the similarity function d,
defined for all objects or clusters in Cq. Let aj be a minimal nonzero
entry in the matrix. Merge all pairs ;jobjects andlor clusters (formerly
read: the pair of objects and/or clusters) with distance aj to create Cj of
value aj-

We will use UHCS to denote the HCS with this step substituted in Johnson's minimum
method, because a unique dendogram is generated even if there are ties in the weight matrix
(the alternative is to break ties arbitrarily). The next example will illustrate this modified
method, and will also show that the mapping from the weight matrix to the UHCS is not
one-to-one.

3. We create a new similarity function for Cj in the following manner: If x
and y are clustered in Cj and not in Cj_1 (Le., d(x, y) = aj), we define
the distance from the cluster [x, y] to any third object or cluster, z, by
d([x, y], z) = min [d(x, z), d(y, z)].

If x and yare objects and/or clusters in Cj_1not clustered in Cj: d(x, y)
remains the same. We obtain a new similarity function d for CJin this
way. (The distance between two clusters is defined to be the mmimum
distance between any pair of elements in which one element is in each
cluster. That is, if x and y are two objects-an object can be either a
single element or a cluster-at level Cj_l, and if d(x,y) = aj (so that x
and y become clustered in C), and if z is any other object or cluster at
level Cj_l, then d(x,z) = d(y,z). Johnson (1967, p. 245) gives a brief
proof of this statement, and it is equivalent to the use of infinity for the
value of the r-metric, which also implies the use of the u/trametric
inequality of Johnson.)

4. We now repeat steps 2 and 3 until we finally obtain the strong cluster-
ing-we are then finished. (The strong clustering is one in which all
elements (nodes) are in the same cluster. In the paradigm of Pathfinder,
the nodes and edges then form a connected graph.)

o 1 1 5
104 2

WI = 1 4 0 5
5 2 5 0

The UHCS using the minimum
method for this matrix is shown in Fig-
ure 6, and thePFNET(r= 00,q = n-I)
for the matrix is shown in Figure 7.

The matrix W2, shown below, has
the sameUHCSas does WI; however,
the structural aspects relating to specific
associations are not a factor in obtaining
the UHCS.

Because HCS were not designed to incorporate subtle aspects of structure, it is not sur-
prising that they have limitations in structuralmatters. Some of these are:

1. If ties in the proximity data are allowed, then the mapping of weight ma-
trices to HCS is not one-to-one; that is, several different weight matrices
can yield the same clustering in an HCS (this is also true of PFNETs,
but to a lesser extent as will be shown later).

2. Nonhierarchical structural relationships cannot be represented. There are
two ways these can occur; first, equal weights can lead to cycles, in the
graphical paradigm, and second, clusters can be overlapping, as de-
scribedin Shepardand Arabie(1979). We will addressonly the first
nonhierarchical situation, as Pathfinder has not yet been sufficiently de-
veloped to apply it to the latter.

3. Information regarding the pair of objects or nodes responsible for estab-
lishing the distance between two clusters (that is, which pair has the
most "salient" relationship) is lost once the clustering is established.

Ties in proximity data used in HCS have been regarded as a problem for many years.
Furthermore, there are significant differences in the single-link (minimum) and complete-
link (maximum) methods in dealing with ties. The single-link method has a continuity
property (Jain & Dubes, 1988, Section 3.2.6) which insures that adding or subtracting
small amounts to tied values results in dendograms which merge smoothly into the same
dendogram as the added amounts tend to zero, no matter how the ties are broken. The
complete-link method, however, does not possess this property, and can yield different
dendograms depending upon how the ties are resolved. As mentioned previously, the ul-
trametric inequality is equivalent to the use of r = 00in PFNETs; the weight of a path be-
tween nodes (objects) not directly linked is the maximum of any of the weights on links
makingup that path,as computedby theMinkowskimetricas r approachedinfinity. By

o 1 4 5
1 0 1 2

W2= 4 1 0 5
525 0

The PFNET(r = 00,q = n-l),
however, is different for W2, as shown
in Figure 8.

A bit of combinatorics shows that
there are, in fact, 12 different matrices
(and 12 different PFNETs) which have
the same UHCS as WI or W2 (nodes 1,
2, and 3 can have anyone edge missing
of the three edges that are possible, or
all three present, and the link between
this cluster and node 4 can be between
node 4 and anyone of the other three
nodes). If the weight matrix is viewed
as a representation of the complete
graph, then any change in a weight or
weights sufficient to change any

Figure 6. The UHCS for matrices WI and W2.

1

PRI

11 PRI 21 PRI

Figure 7. PFNET(r = 00,q = n-I) for WI'

1
PRI

21PRI

N4

Figure8. PFNET(r=oo,q = n-I) for W2'

a2=2

al =1
I I I I

NI N2 N3 N4
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minttee will modify the structure of PFNET(oo,n-I), but may not necessarily modify the
UHCS. Therefore the primary and secondary edges, considered together, define the same
clusters via the node sublists as the UHCS. The labels used in PFNETs (primary, sec-
ondary, and tertiary) thus distinguish between edges in ways not possible in HCS or
UHCS. Again, if distance is the only concern, then one needs only the UHCS; but if navi-
gating through a data structure by following links is important, or if computing cluster
mettics using sttuctural information is necessary, then the sttuctural differences can be im-
portant. HCS or UHCS are hierarchical and unambiguous only in the preservation of dis-
tances between entities.

While different weight mattices can also yield the same PFNETs, sttucture (the nodes
linked because of salient relationships) depends only upon the minimum-distance paths,
which are always preserved in PFNETs. Stated another way, if a given weight is suffi-
ciently large, the corresponding edge will not be in the PFNET. For example, in the mattix
W2 above, suppose that the distance w13 (which has a value of 4 in this example) is
allowed to vary. Provided that wI3 has a value greater than I, then the structure of
PFNET(r = 00,q = 3) remains the same as in Figure 8, since no minttee is changed.

There are other graphical approaches to hierarchical clustering. An example is the fam-
ily of threshold graphs, undirected graphs in which link membership is determined by se-
lecting successively larger thresholds, beginning with the smallest weight value in the
weight mattix. For a given threshold, each link having a weight less than or equal to that
threshold is in the threshold graph. As the threshold is increased in value, a new graph is
generated and the new graph typically has more links (it never has fewer links). Ulti-
mately, the threshold is made large enough to include sufficient links to make the graph
connected. This occurs precisely when the threshold value equals the value of o.i which
would yield the strong clustering defined in Johnson's procedure. A proximity graph is a
threshold graph with the links labeled with their corresponding weights. Threshold and
proximity graphs are discussed in Jain and Dubes (1988). These graphs simply provide an
alternative perspective on the formation of the clusters using the minimum method. A dis-
advantage, however, is that they have only the context supplied by the global threshold on
weight values. In conttast, a PFNET has a more local context provided by the triangle
inequality, in which a link with a certain weight value may be included in one part of the
network, while another link having the same weight value may not be included in another
part of the network. Thus a connected threshold graph can have more links than PFNET
(r = 00,q = n-I), but cannot have fewer links. However, we will show that the same
family of clusters is obtained from the PFNETs.

Before presenting two theorems, we will discuss the relationships between the mini-
mum method UHCS and Pathfinder networks with respect to points 2 and 3 above
(modeling ties through cycles in the graphical paradigm, and maintaining the information
regarding the pair of entities responsible for establishing the distance between two clus-
ters), in terms of both an example and the procedures involved for the generation of the
clustering information and the Pathfinder networks.

We will argue that (I) the information available in a minimum method UHCS is also
available in PFNET(r = oo,q = n-I), and therefore (2) is also available in any PFNET
(r, q) by the inclusion theorems, although some computation may be required, and finally
(3) that the converses of (1) and (2) do not hold.

The aspects in which the minimum method of UHCS and Pathfinder networks are
equivalent will be discussed in terms of the followingexample:

014567
104 7 8 6
440268

W3 = 5 7 2 0 5 7
686503
768730

The incidence table is constructed below, and the membership in node sublists (NSLs) is
indicated by the creegrowing from the top of the incidence table:

There are two observations which can be made on the basis of this example. First, the
o.i levels of Johnson (1967) correspond to the equivalence classes E(wi)' which in turn
correspond to weights of the Pathfinder algorithm. Second, the clusters formed by the
minimum method UHCS are the same as the NSLs of the Pathfinder procedure for sym-
mettic data. A proof showing that the latter claim is general will be offered in Theorem 7.

In the third step of Johnson's HCS procedure, a similarity function is updated after
each o.j is considered. Usually given in mattix form, this function provides the distances
between objects and has dimension equal to the number of objects after merging at each
new value of o.j' There is a simple procedure for computing similar distances between
nodes in the agglomerative Pathfinder generation procedure illusttated above. This proce-
dure derives a square mattix which we will denote DM, and is as follows:

Table 3. The incidence table for the example.

0.5=5

0.4=4

0.3=3

0.2=2

0.1=1

Equivalence Edge
Class Edge N1 N2 N3 N4 N5 N6 Label

E(1) el2 .J .J PRI

E(2) e34 .J .J PRI

E(3) e56 .J .J PRI

E(4) el3 .J .J SEC

e23 .J .J SEC

E(5) el4 .J .J no edge

e45 .J .J SEC
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1. Begin with the weight matrix W;

2. Using node membership within NSLs, eliminate from consideration all
Wijin W in which Ni and Nj are in the same NSL (this results in an ef-
fective distance of zero between nodes within the same NSL);

3. For each pair NSLa and NSLb, select the minimum wmn in which Nm e
NSLa, and N n e NSLb to represent the distance between that pair of
NSLs (If some NSL has at least two nodes, the dimension of the dis-
tance matrix is decreased because some weights are discarded.);

4. The resulting matrix is the distance matrix DM between NSLs.

N1

5
SEC

The results of this reduction of the W matrix to a new distance matrix is a matrix having the
same number of rows and columns as the number of NSLs, in which the distance between
each pair of NSLs is the minimum of all the weights on edges connecting the pair of NSLs.
Like an object in Johnson's paper, an NSL need not have more than one node.

The distance matrix computed in this procedure differs from the matrix Di computed in
Step 15of the agglomerative procedure, or in Step 1 of the matrix method, because the lat-
ter has not examined all paths until q =n-1. The former provides the distances between
entities considering all paths, and the latter provides the distances between entities in which
only paths having i or fewer links are considered. If Johnson had retained intracluster dis-
tances within his computations for each new similarity function (Step 3), thus maintaining
the same dimension as the original weight function, the matrix resulting after the strong
clustering is obtained would be the same as the distance matrix Dn-l obtained in the Path-
finder procedure (using r = 00,of course).

We will now derive the distances between each pair of entities from the PFNET(r = 00,
q = 5) for the above example, and then show that the distances are the same for the mini-
mum method UHCS. Indeed, because of the similarities of the procedures, these distances
must always be the same.

Addressing the distance question in terms of the previous example, the UHCS distance
matrix and the PFNET distance matrix D5 (defined and discussed in the section entitled
Generation Algorithms for PFNETs) both reduce to:

Figure 9. PFNET(r = 00,q = n-l) for W3,

o 1 4 4 5 5
1 044 5 5
4 4 0 2 5 5

D5=W3r = 4 4 2 0 5 5
5 5 5 5 0 3
5 5 5 5 3 0

We will now show that the distance matrices for a PFNET(r = oo,q= n-l) and the
UHCS derived from a common weight matrix Ware identical, and the clusters formed are
the same at each step in the agglomerative methods.

Theorem 7

Given a symmetric weight matrix W having zero-valued entries on the diagonal and
positive values off the diagonal, the clusters formed using the UHCS procedure and the
NSLs formed using the agglomerative Pathfinder procedure are isomorphic at each step.
Furthermore, the interobject distances obtained from UHCS and PFNET(r = 00,q = n-l)
are also identical at each step.

Proof
The proof is by induction over equivalence classes for the Pathfinder network and over

the a.levels of the UHCS. Both agglomerative methods begin with the weak clustering, in
which each node or object is also a cluster. In the graphical paradigm, the nodes are not
linked at this stage; in the clustering scheme, no clusters have been merged. Clearly the
distance matrices are now identical to the W matrix, and the clusters are the same for each
paradigm. For the induction step, assume that the clustering formed at level aj_l, denoted
by Cj_1, has the same clusters as the NSLs formed after the equivalence class E(wj_l) is
considered, using the agglomerative Pathfinder method described in the section entitled
FundamentalProperties.Wealsoassumethattheinterobjectdistancesresultingfromboth
paradigms are identical at this stage.

Now consider the clustering level aj, which corresponds to a weight value of Wjin the
W matrix. In the UHCS procedure, all weights having this value are considered, and ob-
jects having this weight value between them are merged, provided that they are not already
in the same cluster. In the Pathfinder procedure, the equivalence class of weights having
this value is considered, and new NSLs are formed based upon precisely the same criteria
as for the UHCS. Therefore the objects in the next clustering, Cj, are isomorphic to the
NSLs in the Pathfinder paradigm after E(w) is considered.

It remains to show that the interobject distances of the UHCS and of the PFNET(r = 00,
q = n-l) are the same after the merging of clusters which occurs at the clustering level a.
and the merging of NSLs when the equivalence class E(wj) is considered. Since the level

The PFNET(r = 00,q = n-l) for W3 is shown in Figure 9. Structurally, it can be seen
that the relationships in the PFNET are not hierarchical, in the sense that there is a cycle
containing nodes 1,2, and 3; that is, the NSL formed in El, consisting of joining nodes 1
and 2 with an edge having weight 1, is joined with node 3 via both nodes 1 and 2 with
edges having weights of 4. Thus nodes 1,2, and 3 form what is known as a clique in
graph theory (after E(4) is considered), because each is directly linked to the other. This
sort of structural information is not readily available using UHCS. Ties in weight values
are evident in Figure 9, in which the edges e13 and e23 are each in different mintrees, and
connect two node sublists with minimum (and equal) costs. Some of the more recent work
in clustering has recognized the importance of having a procedure which does not
arbitrarily break ties (Shepard & Arabie, 1979, p. 93).
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CJ.jcorresponds to the weight Wjin the ordering of distances given by the original weight
matrix W, clusters separated by this distance are then merged in the UHCS, and NSLs sep-
arated by links having this weight are also merged in Pathfinder. For the UHCS, suppose
that clusters Ca and Cb are merged in this step; then each entity in Ca is at a distance of CJ.j
from each entity in Cb, as in Step 3 of the procedure of Johnson. For PFNET(r = 00,
q = n-I), there are NSLa and NSLb comsponding to Ca and Cb (by the inductive hypoth-
esis), and the weight Wjis equivalent to the level CJ.j-Therefore each node in NSLa is at a
distance of wi from each node in NSLb (because the use of r = 00is equivalent to the use of
the ultrametnc inequality discussed in Johnson, 1967, p. 245). That is, the weight of a
path is equal to the largest weight on any link in the path for r = 00. In UHCS and in Path-
finder, previously determined distances (from smaller-valued equivalence classes or CJ.
levels) remain unchanged. Distances larger than Wjmay be modified in either UHCS or
Pathfinder at this step, because the smallest weight connecting two objects is used to repre-
sent the distance between those objects; but they must be modified the same in either
paradigm because the weights are the same, and the interobject distances are the same at the
preceding step (inductive hypothesis). Therefore the interobject distances obtained in each
method are equal. 0

ship, with labeling done after generation via a shortest-path algorithm, then the UHCS can
be computed as follows.

Procedure UHCS given PFNET(r, q):

I. Disregard (remove) all tertiary edges in PFNET(r, q);

2. Compute the distance matrix Dn-I using r = 00over the primary and
secondary edges in the PFNET. This can be done using the matrix op-
erations described in the section entitled Generation Algorithms for
PFNETs by constructing a weight matrix w* in which the weights as-
sociated with the primary and secondary edges are entered in the appro-
priate locations, and other off-diagonal entries in W. are filled with
some value greater than any weight associated with a primary or a sec-
ondary edge;

3. Dn-I is closely related to the similarity function of Johnson, as dis-
cussed previously, and provides sufficient information to construct the
tree representation of the UHCS if that is desired. Although Dn-I is
equivalent to the UHCS, it is sometimes desirable to construct a tree to
represent the UHCS, as is done in Johnson (1967, p. 243).

As a simple example, suppose that the distance matrix D5, obtained for the PFNET in
Figure 9, has been computed as described above, and the UHCS is desired for this matrix.
To construct the tree shown at the top of Table 3 from the matrix D5, simply apply the
UHCS procedure. The significance of this is that the same clusters are obtained whether or
not the distance matrix is obtained from a Pathfinder network. Computationally, it is desir-
able to compute clusters directly, using one procedure or the other. Some of our Pathfinder
programs print the NSLs after each equivalence class is considered, so that the UHCS is
obtained as the network is generated.

These results (that the minimum method of UHCS is available from any Pathfinder
network) are consistent with the intuitive observations of many of those who have worked
with Pathfinder; clustering of similar entities is usually obvious from a drawing or display
of the network. The importance of graphical display and some of the power of the addi-
tional structural information available in Pathfinder beyond that available in UHCS are
illustrated in Esposito (Chapter 6, this volume; and 1988). For example, the basic-level
categories of Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976) have a distinctive
representation in Pathfinder networks, with the category name in the center of a "wheel,"
and the exemplars of the category at the end of the "spokes" of the wheel. Thus the degree
of the node representing the category name (compared with the number of exemplars) is an
appropriate measure to investigate whether or not a category can be considered a basic-level
category. The degree of a node is also important in a measure proposed by Collins and
Loftus (1975), in which the similarity of two concepts depends upon the number of edges
shared by those concepts. Edge labels depend only upon ordinal properties of the data (see
Theorem 6), so they offer an appealing approach for further measures to investigate. They
are, of course, useful in identifying mintrees and deriving the minimum method UHCS, as
shown in this chapter.

Given a UHCS, using the minimum method, can a PFNET(r, q) be derived? In gen-
eral, the answer is no; the distance matrix obtained from application of the UHCS algorithm
contains little information about the structure. For example, consider the information avail-
able about two clusters in both UHCS and in Pathfinder. Once the merging of the two
clusters has occurred, all entities from one cluster take on the same distance from all the
entities in the other cluster. At this point, the only ways to construct networks from the
distance matrix are (1) to link each node in one cluster with each node in the other cluster;
or (2) to provide some arbitrary link(s) between clusters having the appropriate weight(s).
One of these might, of course, correspond to the PFNET(r, q), but the correspondence
would surely be incidental in terms of the link structure. In general, the UHCS distance
matrix cannot yield enough information to construct a PFNET(r, q) which would be com-
puted from the distance matrix.

Theorem 8

Given WI and Wz, suppose that the PFNET(r = 00,q = n-I) computed from WI is
isomorphic to the PFNET(r = 00,q = n-I) computed from Wz. Then the UHCS(W I)
computed from WI is also isomorphic to the UHCS(Wz) computed from WZ.

Proof"
From Theorem 7, the clusters and distances of PFNET(r = 00, q = n-I) computed

from WI are isomorphic to the clusters and distances computed from UHCS(WI). Simi-
larly, the clusters and distances of PFNET(r = 00,q = n-I) computedfrom Wz are iso-
morphic to the clusters and the distances computed from UHCS(Wz). Therefore, the clus-
ters and distances of UHCS(WI) are isomorphic to those of UHCS(Wz), by transitivity,
since the PFNETs are isomorphic. 0

The converse of Theorem 8 is not true, however, because a unique PFNET cannot be
constructed from a UHCS, as discussed in the examples using WI and Wz and illustrated
in Figures 6, 7, and 8 early in this section.

Given a PFNET(r, q), obtaining the minimum method UHCS is simple. If the inci-
dence (edge-node) table has been constructed, then this already contains the UHCS in the
merging of the node sublists. If the matrix method was used to determine edge member-
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Conclusions

We have presented a class of graphs, PFNETs, whose structure is detennined algo-
rithmically by proximity data and two parameters, the r-metric and q parameter. The
proximity data can either be obtained empirically, or in some domains, detennined by ob-
jective measurements.

It was shown that each Pathfinder network contains all mintrees and is unique, given a
particular weight matrix and particular values for the r-metric and the q parameter. Inclu-
sion properties as rand q vary were demonstrated, so that systematic families of PFNETs
are generated as rand q vary. PFNET structure becomes sparser (has fewer links) as either
r or q increases.

Structure-preserving properties of the PFNETs under monotonic and multiplicative
transfonnations were proven, so that any PFNET can be used with ratio data, and
PFNET(r = 00,q) can be appropriately used with ordinal data.

Last, it was shown that the infonnation in a minimum method hierarchical clustering
scheme is also available in every PFNET, but that there is not sufficient infonnation in a
minimum method HCS to construct a unique PFNET. Pathfinder networks retain infonna-
tion concerning the entities responsible for establishing minimum paths (salient asso-
ciations), unlike HCS, and thus make structural distinctions unavailable in HCS.
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