


Chapter 5

Assessing Structural Similarity of Graphs'

Timothy E. Goldsmith and Daniel M. Davenport

In this chapter, we discuss some measures of the similarity of two graphs. Our work
was initially motivated by a need to measure the similarity between Pathfinder networks
(Schvaneveldt, Durso, & Dearholt, 1985). The problem of how to compare two different
representations, however, exists more generally in the fields of scaling and modeling. A
central assumption of our work is that representations have structural properties and com-
parisons of these representations ought to reflect these structural properties. The aim of
this current work, then, is to identify a method of assessing graph similarity that is sensi-
tive to structural information.

We begin by describing a particular view of structure and similarity and its implications
for comparing graphs. Next, we identify two basic properties of graphs, paths and neigh-
borhoods, and show how each of these properties can be used as a basis for defining graph
similarity. We then describe several related measures for assessing graph similarity, dis-
cuss some of their properties, and report results of an initial comparison of the measures.
Finally, we offer some generalizations and extensions of the measures.

Similarity and Structure

The basic problem we wish to address is how to measure the similarity of two graphs.
More specifically, we would like to define a function that maps any two graphs onto a real
number that reflects the graphs' similarity. The set of such functions is very large because
similarity itself is not well-defined. Graph similarity is somewhat akin to making human
judgments of similarity. Such judgments are inherently subjective because perceived simi-
larity may depend on a multitude of factors induding those characteristics of the objects that
are psychologically salient to the perceiver and the beliefs the perceiver has about the pur-
pose of the judgment. Similar concems arise in defining measures of graph similarity.

Consider, for example, the graphs in Figure 1. Graph A is a simple binary tree with
seven nodes, and graphs Band C are deviations of A; B differs from A in three edges,
whereas C differs in just one edge. Which graph, B or C, is more similar to A? There is,
of course, no absolutely right answer, and in fact, we will show shortly that either B or C
can be viewed as more similar to A.

Notice in Figure 1 that we have arranged the nodes of graphs Band C in the same spa-
tiallayout as in A. We assume that the graphs we compare are always composed of a
common set of labeled nodes, and so switching node labels to assess similarity is disal-
lowed. This assumption is realistic for those applications of graph theory where the nodes
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Energy under contract No. DE-AC04-76DPOO789.
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of a graph correspond to some specific set of objects under study and therefore transposing
nodes would be meaningless. However, we do assume that the edges of the graphs are
unlabeled. This assumption is also reasonable for many applications of graph theory. (We
discuss at the end of the chapter the case of labeled edges.) By graph similarity, then, we
mean the similarity of the patterns of edges that define how two graphs with common node
sets are linked. We take as axiomatic that it is the structure of these edge patterns that we
wish to measure.

A

B c

Figure 1. Original Graph A and distortions Band C.

By structure we mean the organization of an object's constituent parts as viewed from
the perspective of the whole object. Fundamental to structure is the idea of a relation. An
object is defined by the primitive relations on the parts that make it up. An object's struc-
ture, in contrast, exists at a level of higher-order relations, or relations on relations. A
family tree, for example, is defined by the primitive family relations son of and daughter
of A higher-order relation on a family tree is the relation descendant of This relation, by
our definition, reveals more of the structure of the family tree than either son of or daughter
of Higher-order relations necessarily appear at a global rather than primitive level. In this
regard, structure is an emergent property.

Another way that strUcturecan be viewed is as a collection of subobjects of an object
rather than higher-order relations on an object. In this sense structure is viewed as an entity
(specifically, a collection of subobjects). Although this distinction in the tp.rmmay seem
subtle, we believe it is important for defining structural similarity. If StructUil:is viewed as
an entity, then structural similarity of objects should be assessable by identifying the
objects' structural subobjects. On the other hand, if structure is viewed as a property, a
measure of structural similarity should compare the objects' structural properties.

Consider first structure as an entity. To define graph similarity under this view, we
might begin by identifying specific subentities to serve as the basis for comparing graphs.
Subgraphs, such as cycles, stars, and cliques, which are already well-defined and
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intuitively represent graph structures, could be used to define an index of similarity by
counting the common substructures of two graphs. Graham (1987) describes an approach
of Ulam's using a technique based on this idea for measuring graph similarity. Ulam's
method is to partition the edges of two graphs into pairwise isomorphic subgraphs; the
smaller the number of subgraphs needed to decompose the original graphs, the more simi-
lar the graphs. Two graphs with the same number of edges, no matter how dissimilar, can
always be partitioned into sets of identical subgraphs by letting each subgraph be a single
edge. However, graphs that are more structurally similar will decompose into fewer identi-
cal subgraphs, with the extreme case being graphs that are isomorphic, for which no parti-
tioning is needed. Ulam's measure of similarity seems appropriate for abstract graphs,
however it is problematic for defining similarity for graphs as representations. First, his
method assumes that the graphs are unlabeled, whereas the applications of graph theory we
consider usually deal with labeled graphs, and second, the task of finding the minimum
Ulam decomposition for two graphs is a very difficult computational problem in itself for
which there is no known tractable solution.

Consider next the view of structure as a property. Under this perspective, graph simi-
larity might be assessed by comparing two graphs' higher-order property relations, such as
distance between two nodes or the constituents of a neighborhood about a node. This is
the approach that we adopt, and in the next section we employ these two higher-order rela-
tions of graphs to define graph similarity.

Graph Properties and Similarity
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First, we begin with a few basic definitions of graphs and their properties. We limit
our discussion to undirected graphs, without loops, and with a common set of labeled
nodes. An edge relation is a binary relation defined on pairs of nodes and is the most
primitive relation of a graph. All higher-order graph properties are derived from the edge
relation. One such property is a path. The distance between two nodes, v and v', is the
minimum path length for all paths between v and v' provided such a path exists. Because a
path is a relation defined on the edge relation, it is a higher-order relation. A graph can be
completely described by either its edge relations (i.e., adjacency matrix) or its path lengths
(i.e., distance matrix). In the case of undirected graphs, without loops, each of these ma-
trices can be reduced to a vector consisting of only the upper triangular cell entries, and so a
graph with n nodes may be represented by a vector of (n2-n)/2 distances.

A second higher-order graph property is a neighborhood. A neighborhood about some
node, v, is defined to be the set of nodes that are within distance one from v, excluding v
itself. Referring back to Figure I, the neighborhoods for Node 1 in graphs A, B, and C
are (2, 3J, (2,4,5), and (2), respectively. By excluding v from the set, which diverges
from the normal definition of a neighborhood, we can simplify our definitions of graph
similarity. Notice that a neighborhood is also a relation on the edge relation, and thus a
higher-order relation. So, both path length and neighborhood content are, by our defini-
tion, structural properties of graphs. Further, these structural properties are sufficiently
general such that every graph may be described in terms of them. Next we show how both
of these properties can be used to define graph similarity.

First, two graphs may be compared by computing the correlation coefficient of the the
two graphs' distance vectors. A correlation coefficient assesses the shared pool of vari-
ability between two sets of numbers, standardized by a measure of the total pool of vari-
ability. The idea of forming a ratio of shared attributes to total attributes seems intuitively
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appealing for measuring similarity, and in fact comparisons of Pathfinder networks with
this approach have proved meaningful (e.g., Schvaneveldt, Durso, Goldsmith, Breen,
Cooke, Tucker, & DeMaio, 1985).

Turning next to neighborhoods, two graphs may be compared by assessing the similar-
ity of their neighborhoods for corresponding nodes. As with the correlation coefficient, we
would like to measure the degree of shared elements relative to some total pool of elements.
This may be accomplished with sets by examining their intersection and union. More
specifically, an index of similarity for a common node in two graphs is the cardinality of
the intersection of the node neighborhoods divided by the cardinality of the union of the
neighborhoods. One measure of overall graph similarity is the mean of these n values.
This measure will vary from zero to one with higher values indicating greater similarity.

We now have two ways of defining graph similarity, one comparing path distances
with a correlation coefficient and the other assessing neighborhood regions with simple set
operations. The next logical question is whether these two measures actually differ in their
assessments of graph similarity. Consider again the graphs in Figure I and the question of
which graph, B or C, is more similar to A. We now have a means for answering this
question, and the answer is that B is closer to A in terms of path lengths, but C is closer to
A in terms of neighborhoods. The correlation of path lengths between A and B is .79 and
between A and C is .42, whereas the neighborhood similarities between A and B is .43 and
between A and C is .74. So we come to exactly opposite conclusions about the graph's
relative similarity with these two measures. Although there are undoubtedly cases where
both approaches would agree, we believe that, in general, path lengths and neighborhoods
offer qualitatively different ways of assessing structural similarityof graphs. In the follow-
ing section, we describe some closely related similarity measures and their properties. (A
more formal treatment of these definitions and their properties is given in Appendix A.)
Following this we describe the results of a study comparing these various measures.
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others, a point that comes up later. Cl through C6 are normalized over the range [0, I]
where 0 is least similar and I is most similar. C7 and Cg are normalized over the range
[-I, I] where -I is least similar and I is most similar. Each measure takes on its maximum
value for identical graphs. CI through C4 will take on their minimum value when compar-
ing complementary graphs. Finally, algorithms computing the various Cj's are easily
codedin standardcomputerlanguageswhichrun in O(nZ)to O(n3)time in the numberof
nodes.

Comparison of the Measures

We next compare and contrast the various measures by applying them to a common set
of graphs. Consider again the graphs in Figure I. The similarities between each pair of
graphs are given in Table I for all eight measures. Realize that the various measures are
not directly comparable (except C7 and Cg) because each one occurs on a unique scale.
Even CI through C3' which employ similar set-theoretic definitions, are scaled differently
because of different normalizations. Therefore, only relative differences of their values are
meaningful.

Table 1. The similarity between each pair of graphs A, B,
C, in Figure I as measured by Cl through Cg and rank
orders in parentheses from most (1) to least (3) similar.

Similarity
Measure

C1
Cz

C3
C4

Cs
C6

C7

Cg

Definitions and Properties of Graph Similarity Measures

In this section we describe a class ofrelated graph similarity measures. Let ClA, B)
be the similarity between graphs A and B with a common labeled node set as measured by
Cj for i = I to 8. The first four measures are based on neighborhoods and the second four
are based on path lengths. The measures C1and Cg are simply the neighborhood and path
length measures, respectively, described above.

Two other measures, Cz and C3' are similar to Cl and measure the average similarity of
neighborhoods. In each case, the cardinality of the intersection of the neighborhoods is
divided by some number which normalizes the index. Cz and C3 differ from Cl only in
their normalizations. C4is the number of edges that match between A and B divided by the
number of possible matches (Le.,the number of node pairs). It is also one minus the mean
absolute difference between entries in the adjacency vectors of A and B.

Cs is the mean of the ratios of smallest to largest values for corresponding entries in the
two graphs' distance vectors. C6 is one minus the mean absolute difference between en-
tries in the graphs' distance vectors normalized by the sum of these distances. Finally, C7
is the correlation coefficient of the graphs' adjacency vectors. The interested reader may re-
fer to Appendix A for formal definitions.

We next evaluate the above measures with respect to several desirable properties for a
graph similarity measure. First, the measure should be independent of the size of the node
set or the density of the graph. Some of the C/s appear to meet this criterion better than

C(A, B)

0.43 (2)

0.50 (2)
0.50 (3)

0.71 (2.5)

0.79 (1)

0.87 (1)
0.30 (2.5)

0.79 (1)

C(A, C)
0.74 (1)

0.83 (1)

0.87 (1)
0.91 (1)

0.78 (2)

0.85 (2)
0.77 (1)

0.42 (3)

C(B, C)
0.39 (3)

0.48 (3)
0.52 (2)
0.71 (2.5)

0.71 (3)

0.81 (3)
0.30 (2.5)

0.45 (2)

Notice first that CI through C4 and C7 all agree that graphs A and C are most similar,
whereas CS, C6, and Cg show that A and B are most similar. However, the rank orders of
similarity are not identical for these five measures. Notice also that Cs and C6 show an
identical pattern of ranks but Cg has a different pattern. Hence, with these simple graphs
there appear to be important similarities and differences in what the measures are assessing.

We tum next to a similar analysis of more complex graphs. The graphs are Pathfinder
solutions to relatedness ratings of 30 course-relevant concepts given by 20 students and
one instructor. For each of the 21 datasets, four classes of graphs varying in graph density
were derived. Each graph was then compared with every other graph (210 comparisons) in
its class using all eight measures. Graph-theoretic distances were used by all of the mea-
sures. The resulting similarity values for each measure were then correlated with every
other measure. C I through C3 correlated very highly across all of the graphs, as did CS
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and C6' For this reason we do not report the results of C2, C3' and C6' The resulting cor-
relation matrices for each of the four sets of graphs are shown in Tables 2 through 5.

Notice first, as we also saw in Table 1, that C I correlates highly with C7, and this
holds for both sparse and dense graphs. Apparently the method of comparing (set-theoretic
functions or correlation) edge relation information has little effect on the resulting similarity
indices. C4 correlates highly with CI and C7 for sparser graphs, but less so for denser
graphs. Recall that C4 and C7 compare edge relations with mean absolute difference and
correlation, respectively. We speculate that the normalization of C4 is not as good as C7's
or CI 's, and this weakness becomes especially apparent with denser graphs.

Table 5. Correlations on results of C's applied to 30 node graphs
(mean graph density =0.278).

Table 2. Correlations on results of C's applied to 30 node graphs
(mean graph density = 0.067).

Cs correlates most highly with Cs for sparser, but lowest with denser graphs. Also,
CS's correlations with CI and C7 steadily increase with increasing graph density. A likely
reason for this is because as graph density increases, the difference between the adjacency
and distance vectors decreases, until for completely connected graphs the two are identical.
In summary, although certain of the measures appear quite similar, overall there are some
important and systematic differences. Additional analyses employing other types of graphs
and graphs from other applications are needed before more general conclusions can be
reached.

The above analyses simply examined relative agreement of the various measures. Evi-
dence that one measure is actually "better" than another for assessing graph similarity
would require some external index of similarity. As reported elsewhere in this volume
(Goldsmith & Johnson, Chapter 17), there is evidence that the similarity between a stu-
dent's PFNET of course concepts and the instructor's PFNET predicts final course grades
better for similarity measured by C1 than by Cs. This finding was interpreted as support
for the idea that a neighborhood comparison of graphs is more sensitive to configural (i.e.,
structural) information, and it is this type of information that is important in knowledge
structures.

Table 3. Correlations on results of C's applied to 30 node graphs
(mean graph density =0.124).

Generalizations and Extensions of the Measures

In this section, we briefly describe some generalizations and extensions of the neigh-
borhood measures. First, there may be occasions when we want to compare two unlabeled
graphs. For example, we might want to find a best fit of a test graph with some target
graph by permuting the nodes of the test graph. Brute force methods are useless here due
to the explosive growth of the number of permutations as node size increases. Further, the
problem does not seem to lend itself to a linear programming approach. Instead, we could
employ a particular Ci as an optimization function in a simulated annealing process
(Kirkpatrick, Gelatt, & Vecchi, 1983). Here, we would attempt to find that permutation of
nodes for the test graph giving a minimum value for C when compared to the target graph.
When the two graphs are not isomorphic, the annealing technique yields a best fit as de-
fined by the particular C being used. Initial results based on a visual comparison of the tar-
get graph with permuted test graph are promising.

Finally, with some simple modifications we may extend the definitions of C to work
for edge- and node-weighted graphs, as well as edge- and node-colored graphs. This will
allow C to compare, for example, two chemical molecules by representing each with a
node-colored, edge-weighted graph, whose nodes represent individual atoms and whose

Table 4. Correlations on results of C's applied to 30 node graphs
(mean graph density =0.188).

C4 Cs C7 Cs

C1 0.66 0.83 0.94 0.86

C4 0.46 0.86 0.79

Cs 0.74 0.69

C7 0.92

C4 C C7 Cs

C1 0.93 0.84 0.98 0.73

C4 0.81 0.97 0.78

Cs 0.85 0.84

C7 0.75

C4 C C C,

C} 0.97 0.59 0.97 0.46

C4 0.62 1.00 0.51

Cs 0.62 0.73

C7 0.50

C4 Cs C7 Cs
C1 0.49 0.76 0.96 0.83

C4 0.17 0.66 0.60

Cs 0.67 0.61

C7 0.88
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edge weights represent bond valence, or perhaps, bond energy. Interest in assessing simi-
larity of molecular structures has recently led chemists to define graph measures of similar-
ity. For example, Herndon (1988) has developed a technique for computing a quantitative
index of similarity between molecular graphs that requires first translating each graph into a
string of symbols and then employing string comparison methods to determine the original
graphs' structural similarity. In Appendix B we describe in more detail some modifications
of a neighborhood measure of C that may be useful in comparing graph representations of
molecules.

Appendix A

Conclusions

Formal Definitions and Properties of Some Graph Similarity Measures
We identify a class of similarity functions for comparing graphs as Qt. We denote a

particular function from Qtas C and use subscripts to distinguish different measures. A
graph G =(V, E) is a finite set V of n nodes and a set E of edges where E is a subset of
V x V (Carre, 1979). We say two graphs Gl(Vl, El) and G2(V2, E2) have a common
node set if VI =V2. Given two undirected and labeled graphs A and B with common
node set V, C(A, B) is the similarity between A and B as measured by C. We define a
neighborhood as a region about a particular node in a graph. Let oc(v,v') be the graph

distance between nodes v and v'. Define aG(v,v') to be 1 if 0G(v,v') = 1 and 0 other-
wise. We denote by Gv the set of nodes v' such that aG (v,v') = 1. This set is the

neighborhood about v.
We define the following similarity measures. In cases where the denominator of a

summand is zero, we employ the convention that if both neighborhoods for an element are
empty then the summand for that element is one, but if only one of the neighborhoods is
empty, then the summand for that element is zero.

We began by assuming that a measure of graph similarity should assess structural in-
formation. We attempted to argue that structure is best viewed as a property of graphs
rather than as an entity. We then defined structural property as a higher-order relation and
identified two distinct types of structural properties in graphs: paths and neighborhoods.
Several related measures of graph similarity employing either path lengths or neighbor-
hoods were defined and some of their properties noted. An initial analysis of these mea-
sures indicated that use of path lengths and neighborhoods to determine similarity assess
different characteristics of graphs.

What lies behind these differences? Path distances describe how far away nodes are lo-
cated; neighborhoods describe which nodes are linked. Path distances employ node pairs
as the unit of comparison; neighborhoods use nodes. The path distance approach first con-
verts the information contained in a path to a real number (the path length) and then com-
pares corresponding path lengths between graphs; the neighborhood approach first com-
pares corresponding neighborhoods with set-theoretic measures and then converts this re-
sult to a real number. Whether one approach is better than the other of course ultimately
depends on its functional utility within a particular application. If the phenomena being
represented by graphs is inherently described by distance information, then path distances
will likely be better. However, if what is being represented is more accurately reflected by
associations within neighborhoods, then the neighborhood approach should prove better.

C1(A, B)
!~ IAv (") Bvi

n~IAvuBvl
veV

C2(A, B)
2~ IAv (") Bvi

n~IAvl + IBvl
veV

C3(A, B) = InLIAv (") Bvi
veV

1 1

IAyl + IByl

Notice that if we write C3 as

1

[

1~ IAv (") Bvl 1~ IAv (") BvI

]C3(A,B) =2 n~ IAvl + n~ IBvl
ve V ve V

we see that it is the average of two other similarity measures. These other measures are in-
teresting in their own right and are reminiscent of conditional probabilities. In assessing
similarity between A and B in one case, the measure is sensitive to those edges in A omitted



84 Goldsmith & Davenport

by B, and in the other case it is sensitive to edges in B not found in A. As the average of
the two, C3 captures both cases. There may be applications where one would want to use
only one of the individual measures. For example, if we assume that graph A represents a
prototype of some sort, then it may be meaningful to assess the similarity of an exemplar
(B) to the prototype (A). We would expect a different result when the similarity of A to B
is computed.

Next, we define, for two nonnegative real numbers a and b, a e b to be one if a = b,

a/b if a < b, and b/a if b < a. Also, let A $ B be the symmetric difference between sets
A and B. Then, C4is defined as follows:

C4(A,B)= I-+- L laA(v,v')- aB(v,v')1n -n ,
vo<v

= +-L a A (v, v') e a B (v, v')
n -n vo<v'

I-~LIAv$Bvl
veV

Interestingly, C4 is also one minus the average of the symmetric differences of the neigh-
borhoods, This may be seen by noting that

L a A (v ,v') . a B (v ,v')
vo<v'

IAvllBVI

and

laA (v,v') - aB(v,v') I aA (v,v') + aB (v,v') - 2(aA(v,v') . aB(v,v'))

I

I
I

I
I
I

I
,

I

I

t
I
I

I
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We now define two other measures Cs and C6which are based on path lengths. Notice

that Cs is similar to C4except that the function e is applied to actual graph distances for CS'
but to edge relations for C4.

CS(A, B) = +- LOA(v,v') e 0B(V'V')
n -nvotv'

~ IOA(V,V') - 0B(v,v')1

C6(A, B) = 1- nLn..£..J 0A (v, v') + 0B(v,v')
votv'

For similarity measures C1 through C6 we may derive distance measures, D, by letting
D = I-C. Some of the measures have interesting forms as distances.

D1(A, B) ~L
IAv $ Bvl

IAv U Bvl
veV

D2(A, B) ~L
IA v $ B v I

IAvl + IBv/
veV

D4(A,B) = ~ L IAv $ Bvi
veV

Also,fromthedefinitionsof C wemaydiscoverseveralinterestingproperties.Since

IAvl IBvl I
2. s2(1Avl+ IBvl)sIAvUBvlsn-I

we get C1 S C2 S C3, C1 S C4, and Cs S C6. In general. C4 is incomparable to C2 and
C3' Similar relations hold for the distance measures as well. Also, it is possible (but te-
dious) to show that the distance indices for all of the similarity measures, except C3' are
metrics on the space of subsets of V x V .

We can think of graphs with common node set Vas subsets of V x V. As such, the set

of all such graphs is a Boolean ring whose multiplicative identity,!, is the completely con-
nected graph and whose zero is the empty graph. In this ring, multiplication is given by
intersection and addition is given by symmetric difference. If we choose D 1for a metric on
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this space, we may define a norm (which we call the C I norm) on a graph G by

IIGII= I-DI(G, l) = C1(G,I). With this definition, the following propenies hold for all
graphs A, B, and C over node set V:

IIA u B II + IIA 11 B II = II A II + II B II

I-IIAII=II A II

IIA EB BII ~II A II +11 B II

IIAI1BII~IIA II

IIA EB B II + IIA EB C II ~ liB EB C II

where A is the complement of A with respect to I. This last inequality allows us to define a
metric D(A, B) = IIA EBB II, which turns out surprisingly to be D4. t

I

I

I
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Appendix B

An Extension ofNeighborlwod Similarity Measures
The weight of an edge (v,v') in a graph G will be denoted by wG(v,v') and its color by

xdv,v'). The weight of a node v in G will be denoted wG(v) and its color by xG(v). Next
we define a Kronecker delta function on the set of colors in a graph by o(c,c') = I, if cis
the same color as c' and is 0 otherwise. All of our measures then take the form

v\ L (WA(V)e WB(V»)(B(XA(V),XB(V»)).
veV

v2~v)L ( WA(v,v') e WB(V,V'») (B(XA(V,V'), XB(V,V'»))
v..v'

where vI and v2 are normalizing functions. For example

~ L B(XA(v), XB(V»)
[ I I I L, ( WA(v,v') e wB(v,v') )]V A v u Bv v..vve

is a measure of similarity between two node-colored, edge-weighted graphs. Notice that
this measure reduces to CI for graphs that are not colored or weighted. With careful nor-
malization, a number of potentially useful measures are definable.


